// <copyright file="Zipf.cs" company="Math.NET">
|
// Math.NET Numerics, part of the Math.NET Project
|
// http://numerics.mathdotnet.com
|
// http://github.com/mathnet/mathnet-numerics
|
//
|
// Copyright (c) 2009-2014 Math.NET
|
//
|
// Permission is hereby granted, free of charge, to any person
|
// obtaining a copy of this software and associated documentation
|
// files (the "Software"), to deal in the Software without
|
// restriction, including without limitation the rights to use,
|
// copy, modify, merge, publish, distribute, sublicense, and/or sell
|
// copies of the Software, and to permit persons to whom the
|
// Software is furnished to do so, subject to the following
|
// conditions:
|
//
|
// The above copyright notice and this permission notice shall be
|
// included in all copies or substantial portions of the Software.
|
//
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
|
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
|
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
// OTHER DEALINGS IN THE SOFTWARE.
|
// </copyright>
|
|
using System;
|
using System.Collections.Generic;
|
using IStation.Numerics.Random;
|
|
namespace IStation.Numerics.Distributions
|
{
|
/// <summary>
|
/// Discrete Univariate Zipf distribution.
|
/// Zipf's law, an empirical law formulated using mathematical statistics, refers to the fact
|
/// that many types of data studied in the physical and social sciences can be approximated with
|
/// a Zipfian distribution, one of a family of related discrete power law probability distributions.
|
/// For details about this distribution, see
|
/// <a href="http://en.wikipedia.org/wiki/Zipf%27s_law">Wikipedia - Zipf distribution</a>.
|
/// </summary>
|
public class Zipf : IDiscreteDistribution
|
{
|
System.Random _random;
|
|
/// <summary>
|
/// The s parameter of the distribution.
|
/// </summary>
|
readonly double _s;
|
|
/// <summary>
|
/// The n parameter of the distribution.
|
/// </summary>
|
readonly int _n;
|
|
/// <summary>
|
/// Initializes a new instance of the <see cref="Zipf"/> class.
|
/// </summary>
|
/// <param name="s">The s parameter of the distribution.</param>
|
/// <param name="n">The n parameter of the distribution.</param>
|
public Zipf(double s, int n)
|
{
|
if (!IsValidParameterSet(s, n))
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
|
_random = SystemRandomSource.Default;
|
_s = s;
|
_n = n;
|
}
|
|
/// <summary>
|
/// Initializes a new instance of the <see cref="Zipf"/> class.
|
/// </summary>
|
/// <param name="s">The s parameter of the distribution.</param>
|
/// <param name="n">The n parameter of the distribution.</param>
|
/// <param name="randomSource">The random number generator which is used to draw random samples.</param>
|
public Zipf(double s, int n, System.Random randomSource)
|
{
|
if (!IsValidParameterSet(s, n))
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
|
_random = randomSource ?? SystemRandomSource.Default;
|
_s = s;
|
_n = n;
|
}
|
|
/// <summary>
|
/// A string representation of the distribution.
|
/// </summary>
|
/// <returns>a string representation of the distribution.</returns>
|
public override string ToString()
|
{
|
return $"Zipf(S = {_s}, N = {_n})";
|
}
|
|
/// <summary>
|
/// Tests whether the provided values are valid parameters for this distribution.
|
/// </summary>
|
/// <param name="s">The s parameter of the distribution.</param>
|
/// <param name="n">The n parameter of the distribution.</param>
|
public static bool IsValidParameterSet(double s, int n)
|
{
|
return n > 0 && s > 0.0;
|
}
|
|
/// <summary>
|
/// Gets or sets the s parameter of the distribution.
|
/// </summary>
|
public double S => _s;
|
|
/// <summary>
|
/// Gets or sets the n parameter of the distribution.
|
/// </summary>
|
public int N => _n;
|
|
/// <summary>
|
/// Gets or sets the random number generator which is used to draw random samples.
|
/// </summary>
|
public System.Random RandomSource
|
{
|
get => _random;
|
set => _random = value ?? SystemRandomSource.Default;
|
}
|
|
/// <summary>
|
/// Gets the mean of the distribution.
|
/// </summary>
|
public double Mean => SpecialFunctions.GeneralHarmonic(_n, _s - 1.0)/SpecialFunctions.GeneralHarmonic(_n, _s);
|
|
/// <summary>
|
/// Gets the variance of the distribution.
|
/// </summary>
|
public double Variance
|
{
|
get
|
{
|
if (_s <= 3)
|
{
|
throw new NotSupportedException();
|
}
|
|
var ghns = SpecialFunctions.GeneralHarmonic(_n, _s);
|
return (SpecialFunctions.GeneralHarmonic(_n, _s - 2)*SpecialFunctions.GeneralHarmonic(_n, _s))
|
- (Math.Pow(SpecialFunctions.GeneralHarmonic(_n, _s - 1), 2)/(ghns*ghns));
|
}
|
}
|
|
/// <summary>
|
/// Gets the standard deviation of the distribution.
|
/// </summary>
|
public double StdDev => Math.Sqrt(Variance);
|
|
/// <summary>
|
/// Gets the entropy of the distribution.
|
/// </summary>
|
public double Entropy
|
{
|
get
|
{
|
double sum = 0;
|
for (var i = 0; i < _n; i++)
|
{
|
sum += Math.Log(i + 1)/Math.Pow(i + 1, _s);
|
}
|
|
return ((_s/SpecialFunctions.GeneralHarmonic(_n, _s))*sum) + Math.Log(SpecialFunctions.GeneralHarmonic(_n, _s));
|
}
|
}
|
|
/// <summary>
|
/// Gets the skewness of the distribution.
|
/// </summary>
|
public double Skewness
|
{
|
get
|
{
|
if (_s <= 4)
|
{
|
throw new NotSupportedException();
|
}
|
|
return ((SpecialFunctions.GeneralHarmonic(_n, _s - 3)*Math.Pow(SpecialFunctions.GeneralHarmonic(_n, _s), 2)) - (SpecialFunctions.GeneralHarmonic(_n, _s - 1)*((3*SpecialFunctions.GeneralHarmonic(_n, _s - 2)*SpecialFunctions.GeneralHarmonic(_n, _s)) - Math.Pow(SpecialFunctions.GeneralHarmonic(_n, _s - 1), 2))))/Math.Pow((SpecialFunctions.GeneralHarmonic(_n, _s - 2)*SpecialFunctions.GeneralHarmonic(_n, _s)) - Math.Pow(SpecialFunctions.GeneralHarmonic(_n, _s - 1), 2), 1.5);
|
}
|
}
|
|
/// <summary>
|
/// Gets the mode of the distribution.
|
/// </summary>
|
public int Mode => 1;
|
|
/// <summary>
|
/// Gets the median of the distribution.
|
/// </summary>
|
public double Median => throw new NotSupportedException();
|
|
/// <summary>
|
/// Gets the smallest element in the domain of the distributions which can be represented by an integer.
|
/// </summary>
|
public int Minimum => 1;
|
|
/// <summary>
|
/// Gets the largest element in the domain of the distributions which can be represented by an integer.
|
/// </summary>
|
public int Maximum => _n;
|
|
/// <summary>
|
/// Computes the probability mass (PMF) at k, i.e. P(X = k).
|
/// </summary>
|
/// <param name="k">The location in the domain where we want to evaluate the probability mass function.</param>
|
/// <returns>the probability mass at location <paramref name="k"/>.</returns>
|
public double Probability(int k)
|
{
|
return (1.0/Math.Pow(k, _s))/SpecialFunctions.GeneralHarmonic(_n, _s);
|
}
|
|
/// <summary>
|
/// Computes the log probability mass (lnPMF) at k, i.e. ln(P(X = k)).
|
/// </summary>
|
/// <param name="k">The location in the domain where we want to evaluate the log probability mass function.</param>
|
/// <returns>the log probability mass at location <paramref name="k"/>.</returns>
|
public double ProbabilityLn(int k)
|
{
|
return Math.Log(Probability(k));
|
}
|
|
/// <summary>
|
/// Computes the cumulative distribution (CDF) of the distribution at x, i.e. P(X ≤ x).
|
/// </summary>
|
/// <param name="x">The location at which to compute the cumulative distribution function.</param>
|
/// <returns>the cumulative distribution at location <paramref name="x"/>.</returns>
|
public double CumulativeDistribution(double x)
|
{
|
if (x < 1)
|
{
|
return 0.0;
|
}
|
|
return SpecialFunctions.GeneralHarmonic((int)x, _s)/SpecialFunctions.GeneralHarmonic(_n, _s);
|
}
|
|
/// <summary>
|
/// Computes the probability mass (PMF) at k, i.e. P(X = k).
|
/// </summary>
|
/// <param name="k">The location in the domain where we want to evaluate the probability mass function.</param>
|
/// <param name="s">The s parameter of the distribution.</param>
|
/// <param name="n">The n parameter of the distribution.</param>
|
/// <returns>the probability mass at location <paramref name="k"/>.</returns>
|
public static double PMF(double s, int n, int k)
|
{
|
if (!(n > 0 && s > 0.0))
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
|
return (1.0/Math.Pow(k, s))/SpecialFunctions.GeneralHarmonic(n, s);
|
}
|
|
/// <summary>
|
/// Computes the log probability mass (lnPMF) at k, i.e. ln(P(X = k)).
|
/// </summary>
|
/// <param name="k">The location in the domain where we want to evaluate the log probability mass function.</param>
|
/// <param name="s">The s parameter of the distribution.</param>
|
/// <param name="n">The n parameter of the distribution.</param>
|
/// <returns>the log probability mass at location <paramref name="k"/>.</returns>
|
public static double PMFLn(double s, int n, int k)
|
{
|
if (!(n > 0 && s > 0.0))
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
|
return Math.Log(PMF(s, n, k));
|
}
|
|
/// <summary>
|
/// Computes the cumulative distribution (CDF) of the distribution at x, i.e. P(X ≤ x).
|
/// </summary>
|
/// <param name="x">The location at which to compute the cumulative distribution function.</param>
|
/// <param name="s">The s parameter of the distribution.</param>
|
/// <param name="n">The n parameter of the distribution.</param>
|
/// <returns>the cumulative distribution at location <paramref name="x"/>.</returns>
|
/// <seealso cref="CumulativeDistribution"/>
|
public static double CDF(double s, int n, double x)
|
{
|
if (!(n > 0 && s > 0.0))
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
|
if (x < 1)
|
{
|
return 0.0;
|
}
|
|
return SpecialFunctions.GeneralHarmonic((int)x, s)/SpecialFunctions.GeneralHarmonic(n, s);
|
}
|
|
/// <summary>
|
/// Generates a sample from the Zipf distribution without doing parameter checking.
|
/// </summary>
|
/// <param name="rnd">The random number generator to use.</param>
|
/// <param name="s">The s parameter of the distribution.</param>
|
/// <param name="n">The n parameter of the distribution.</param>
|
/// <returns>a random number from the Zipf distribution.</returns>
|
static int SampleUnchecked(System.Random rnd, double s, int n)
|
{
|
var r = 0.0;
|
while (r == 0.0)
|
{
|
r = rnd.NextDouble();
|
}
|
|
var p = 1.0/SpecialFunctions.GeneralHarmonic(n, s);
|
int i;
|
var sum = 0.0;
|
for (i = 1; i <= n; i++)
|
{
|
sum += p/Math.Pow(i, s);
|
if (sum >= r)
|
{
|
break;
|
}
|
}
|
|
return i;
|
}
|
|
static void SamplesUnchecked(System.Random rnd, int[] values, double s, int n)
|
{
|
for (int i = 0; i < values.Length; i++)
|
{
|
values[i] = SampleUnchecked(rnd, s, n);
|
}
|
}
|
|
static IEnumerable<int> SamplesUnchecked(System.Random rnd, double s, int n)
|
{
|
while (true)
|
{
|
yield return SampleUnchecked(rnd, s, n);
|
}
|
}
|
|
/// <summary>
|
/// Draws a random sample from the distribution.
|
/// </summary>
|
/// <returns>a sample from the distribution.</returns>
|
public int Sample()
|
{
|
return SampleUnchecked(_random, _s, _n);
|
}
|
|
/// <summary>
|
/// Fills an array with samples generated from the distribution.
|
/// </summary>
|
public void Samples(int[] values)
|
{
|
SamplesUnchecked(_random, values, _s, _n);
|
}
|
|
/// <summary>
|
/// Samples an array of zipf distributed random variables.
|
/// </summary>
|
/// <returns>a sequence of samples from the distribution.</returns>
|
public IEnumerable<int> Samples()
|
{
|
return SamplesUnchecked(_random, _s, _n);
|
}
|
|
/// <summary>
|
/// Samples a random variable.
|
/// </summary>
|
/// <param name="rnd">The random number generator to use.</param>
|
/// <param name="s">The s parameter of the distribution.</param>
|
/// <param name="n">The n parameter of the distribution.</param>
|
public static int Sample(System.Random rnd, double s, int n)
|
{
|
if (!(n > 0 && s > 0.0))
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
|
return SampleUnchecked(rnd, s, n);
|
}
|
|
/// <summary>
|
/// Samples a sequence of this random variable.
|
/// </summary>
|
/// <param name="rnd">The random number generator to use.</param>
|
/// <param name="s">The s parameter of the distribution.</param>
|
/// <param name="n">The n parameter of the distribution.</param>
|
public static IEnumerable<int> Samples(System.Random rnd, double s, int n)
|
{
|
if (!(n > 0 && s > 0.0))
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
|
return SamplesUnchecked(rnd, s, n);
|
}
|
|
/// <summary>
|
/// Fills an array with samples generated from the distribution.
|
/// </summary>
|
/// <param name="rnd">The random number generator to use.</param>
|
/// <param name="values">The array to fill with the samples.</param>
|
/// <param name="s">The s parameter of the distribution.</param>
|
/// <param name="n">The n parameter of the distribution.</param>
|
public static void Samples(System.Random rnd, int[] values, double s, int n)
|
{
|
if (!(n > 0 && s > 0.0))
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
|
SamplesUnchecked(rnd, values, s, n);
|
}
|
|
/// <summary>
|
/// Samples a random variable.
|
/// </summary>
|
/// <param name="s">The s parameter of the distribution.</param>
|
/// <param name="n">The n parameter of the distribution.</param>
|
public static int Sample(double s, int n)
|
{
|
if (!(n > 0 && s > 0.0))
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
|
return SampleUnchecked(SystemRandomSource.Default, s, n);
|
}
|
|
/// <summary>
|
/// Samples a sequence of this random variable.
|
/// </summary>
|
/// <param name="s">The s parameter of the distribution.</param>
|
/// <param name="n">The n parameter of the distribution.</param>
|
public static IEnumerable<int> Samples(double s, int n)
|
{
|
if (!(n > 0 && s > 0.0))
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
|
return SamplesUnchecked(SystemRandomSource.Default, s, n);
|
}
|
|
/// <summary>
|
/// Fills an array with samples generated from the distribution.
|
/// </summary>
|
/// <param name="values">The array to fill with the samples.</param>
|
/// <param name="s">The s parameter of the distribution.</param>
|
/// <param name="n">The n parameter of the distribution.</param>
|
public static void Samples(int[] values, double s, int n)
|
{
|
if (!(n > 0 && s > 0.0))
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
|
SamplesUnchecked(SystemRandomSource.Default, values, s, n);
|
}
|
}
|
}
|