// <copyright file="GaussLegendreRule.cs" company="Math.NET">
|
// Math.NET Numerics, part of the Math.NET Project
|
// http://numerics.mathdotnet.com
|
// http://github.com/mathnet/mathnet-numerics
|
//
|
// Copyright (c) 2009-2016 Math.NET
|
//
|
// Permission is hereby granted, free of charge, to any person
|
// obtaining a copy of this software and associated documentation
|
// files (the "Software"), to deal in the Software without
|
// restriction, including without limitation the rights to use,
|
// copy, modify, merge, publish, distribute, sublicense, and/or sell
|
// copies of the Software, and to permit persons to whom the
|
// Software is furnished to do so, subject to the following
|
// conditions:
|
//
|
// The above copyright notice and this permission notice shall be
|
// included in all copies or substantial portions of the Software.
|
//
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
|
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
|
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
// OTHER DEALINGS IN THE SOFTWARE.
|
// </copyright>
|
|
using System;
|
using System.Numerics;
|
using IStation.Numerics.Integration.GaussRule;
|
|
namespace IStation.Numerics.Integration
|
{
|
/// <summary>
|
/// Approximates a definite integral using an Nth order Gauss-Legendre rule. Precomputed Gauss-Legendre abscissas/weights for orders 2-20, 32, 64, 96, 100, 128, 256, 512, 1024 are used, otherwise they're calculated on the fly.
|
/// </summary>
|
public class GaussLegendreRule
|
{
|
private readonly GaussPoint _gaussLegendrePoint;
|
|
/// <summary>
|
/// Initializes a new instance of the <see cref="GaussLegendreRule"/> class.
|
/// </summary>
|
/// <param name="intervalBegin">Where the interval starts, inclusive and finite.</param>
|
/// <param name="intervalEnd">Where the interval stops, inclusive and finite.</param>
|
/// <param name="order">Defines an Nth order Gauss-Legendre rule. The order also defines the number of abscissas and weights for the rule. Precomputed Gauss-Legendre abscissas/weights for orders 2-20, 32, 64, 96, 100, 128, 256, 512, 1024 are used, otherwise they're calculated on the fly.</param>
|
public GaussLegendreRule(double intervalBegin, double intervalEnd, int order)
|
{
|
_gaussLegendrePoint = GaussLegendrePointFactory.GetGaussPoint(intervalBegin, intervalEnd, order);
|
}
|
|
/// <summary>
|
/// Gettter for the ith abscissa.
|
/// </summary>
|
/// <param name="index">Index of the ith abscissa.</param>
|
/// <returns>The ith abscissa.</returns>
|
public double GetAbscissa(int index)
|
{
|
return _gaussLegendrePoint.Abscissas[index];
|
}
|
|
/// <summary>
|
/// Getter that returns a clone of the array containing the abscissas.
|
/// </summary>
|
public double[] Abscissas => _gaussLegendrePoint.Abscissas.Clone() as double[];
|
|
/// <summary>
|
/// Getter for the ith weight.
|
/// </summary>
|
/// <param name="index">Index of the ith weight.</param>
|
/// <returns>The ith weight.</returns>
|
public double GetWeight(int index)
|
{
|
return _gaussLegendrePoint.Weights[index];
|
}
|
|
/// <summary>
|
/// Getter that returns a clone of the array containing the weights.
|
/// </summary>
|
public double[] Weights => _gaussLegendrePoint.Weights.Clone() as double[];
|
|
/// <summary>
|
/// Getter for the order.
|
/// </summary>
|
public int Order => _gaussLegendrePoint.Order;
|
|
/// <summary>
|
/// Getter for the InvervalBegin.
|
/// </summary>
|
public double IntervalBegin => _gaussLegendrePoint.IntervalBegin;
|
|
/// <summary>
|
/// Getter for the InvervalEnd.
|
/// </summary>
|
public double IntervalEnd => _gaussLegendrePoint.IntervalEnd;
|
|
/// <summary>
|
/// Approximates a definite integral using an Nth order Gauss-Legendre rule.
|
/// </summary>
|
/// <param name="f">The analytic smooth function to integrate.</param>
|
/// <param name="invervalBegin">Where the interval starts, exclusive and finite.</param>
|
/// <param name="invervalEnd">Where the interval ends, exclusive and finite.</param>
|
/// <param name="order">Defines an Nth order Gauss-Legendre rule. The order also defines the number of abscissas and weights for the rule. Precomputed Gauss-Legendre abscissas/weights for orders 2-20, 32, 64, 96, 100, 128, 256, 512, 1024 are used, otherwise they're calculated on the fly.</param>
|
/// <returns>Approximation of the finite integral in the given interval.</returns>
|
public static double Integrate(Func<double, double> f, double invervalBegin, double invervalEnd, int order)
|
{
|
GaussPoint gaussLegendrePoint = GaussLegendrePointFactory.GetGaussPoint(order);
|
|
double sum, ax;
|
int i;
|
int m = (order + 1) >> 1;
|
|
double a = 0.5*(invervalEnd - invervalBegin);
|
double b = 0.5*(invervalEnd + invervalBegin);
|
|
if (order.IsOdd())
|
{
|
sum = gaussLegendrePoint.Weights[0]*f(b);
|
for (i = 1; i < m; i++)
|
{
|
ax = a*gaussLegendrePoint.Abscissas[i];
|
sum += gaussLegendrePoint.Weights[i]*(f(b + ax) + f(b - ax));
|
}
|
}
|
else
|
{
|
sum = 0.0;
|
for (i = 0; i < m; i++)
|
{
|
ax = a*gaussLegendrePoint.Abscissas[i];
|
sum += gaussLegendrePoint.Weights[i]*(f(b + ax) + f(b - ax));
|
}
|
}
|
|
return a*sum;
|
}
|
|
/// <summary>
|
/// Approximates a definite integral using an Nth order Gauss-Legendre rule.
|
/// </summary>
|
/// <param name="f">The analytic smooth complex function to integrate, defined on the real domain.</param>
|
/// <param name="invervalBegin">Where the interval starts, exclusive and finite.</param>
|
/// <param name="invervalEnd">Where the interval ends, exclusive and finite.</param>
|
/// <param name="order">Defines an Nth order Gauss-Legendre rule. The order also defines the number of abscissas and weights for the rule. Precomputed Gauss-Legendre abscissas/weights for orders 2-20, 32, 64, 96, 100, 128, 256, 512, 1024 are used, otherwise they're calculated on the fly.</param>
|
/// <returns>Approximation of the finite integral in the given interval.</returns>
|
public static Complex ContourIntegrate(Func<double, Complex> f, double invervalBegin, double invervalEnd, int order)
|
{
|
GaussPoint gaussLegendrePoint = GaussLegendrePointFactory.GetGaussPoint(order);
|
|
Complex sum;
|
double ax;
|
int i;
|
int m = (order + 1) >> 1;
|
|
double a = 0.5 * (invervalEnd - invervalBegin);
|
double b = 0.5 * (invervalEnd + invervalBegin);
|
|
if (order.IsOdd())
|
{
|
sum = gaussLegendrePoint.Weights[0] * f(b);
|
for (i = 1; i < m; i++)
|
{
|
ax = a * gaussLegendrePoint.Abscissas[i];
|
sum += gaussLegendrePoint.Weights[i] * (f(b + ax) + f(b - ax));
|
}
|
}
|
else
|
{
|
sum = 0.0;
|
for (i = 0; i < m; i++)
|
{
|
ax = a * gaussLegendrePoint.Abscissas[i];
|
sum += gaussLegendrePoint.Weights[i] * (f(b + ax) + f(b - ax));
|
}
|
}
|
|
return a * sum;
|
}
|
|
/// <summary>
|
/// Approximates a 2-dimensional definite integral using an Nth order Gauss-Legendre rule over the rectangle [a,b] x [c,d].
|
/// </summary>
|
/// <param name="f">The 2-dimensional analytic smooth function to integrate.</param>
|
/// <param name="invervalBeginA">Where the interval starts for the first (inside) integral, exclusive and finite.</param>
|
/// <param name="invervalEndA">Where the interval ends for the first (inside) integral, exclusive and finite.</param>
|
/// <param name="invervalBeginB">Where the interval starts for the second (outside) integral, exclusive and finite.</param>
|
/// /// <param name="invervalEndB">Where the interval ends for the second (outside) integral, exclusive and finite.</param>
|
/// <param name="order">Defines an Nth order Gauss-Legendre rule. The order also defines the number of abscissas and weights for the rule. Precomputed Gauss-Legendre abscissas/weights for orders 2-20, 32, 64, 96, 100, 128, 256, 512, 1024 are used, otherwise they're calculated on the fly.</param>
|
/// <returns>Approximation of the finite integral in the given interval.</returns>
|
public static double Integrate(Func<double, double, double> f, double invervalBeginA, double invervalEndA, double invervalBeginB, double invervalEndB, int order)
|
{
|
GaussPoint gaussLegendrePoint = GaussLegendrePointFactory.GetGaussPoint(order);
|
|
double ax, cy, sum;
|
int i, j;
|
int m = (order + 1) >> 1;
|
|
double a = 0.5*(invervalEndA - invervalBeginA);
|
double b = 0.5*(invervalEndA + invervalBeginA);
|
double c = 0.5*(invervalEndB - invervalBeginB);
|
double d = 0.5*(invervalEndB + invervalBeginB);
|
|
if (order.IsOdd())
|
{
|
sum = gaussLegendrePoint.Weights[0]*gaussLegendrePoint.Weights[0]*f(b, d);
|
|
double t;
|
for (j = 1, t = 0.0; j < m; j++)
|
{
|
cy = c*gaussLegendrePoint.Abscissas[j];
|
t += gaussLegendrePoint.Weights[j]*(f(b, d + cy) + f(b, d - cy));
|
}
|
|
sum += gaussLegendrePoint.Weights[0]*t;
|
|
for (i = 1, t = 0.0; i < m; i++)
|
{
|
ax = a*gaussLegendrePoint.Abscissas[i];
|
t += gaussLegendrePoint.Weights[i]*(f(b + ax, d) + f(b - ax, d));
|
}
|
|
sum += gaussLegendrePoint.Weights[0]*t;
|
|
for (i = 1; i < m; i++)
|
{
|
ax = a*gaussLegendrePoint.Abscissas[i];
|
for (j = 1; j < m; j++)
|
{
|
cy = c*gaussLegendrePoint.Abscissas[j];
|
sum += gaussLegendrePoint.Weights[i]*gaussLegendrePoint.Weights[j]*(f(b + ax, d + cy) + f(ax + b, d - cy) + f(b - ax, d + cy) + f(b - ax, d - cy));
|
}
|
}
|
}
|
else
|
{
|
sum = 0.0;
|
for (i = 0; i < m; i++)
|
{
|
ax = a*gaussLegendrePoint.Abscissas[i];
|
for (j = 0; j < m; j++)
|
{
|
cy = c*gaussLegendrePoint.Abscissas[j];
|
sum += gaussLegendrePoint.Weights[i]*gaussLegendrePoint.Weights[j]*(f(b + ax, d + cy) + f(ax + b, d - cy) + f(b - ax, d + cy) + f(b - ax, d - cy));
|
}
|
}
|
}
|
|
return c*a*sum;
|
}
|
}
|
}
|