// <copyright file="Interpolate.cs" company="Math.NET">
|
// Math.NET Numerics, part of the Math.NET Project
|
// http://numerics.mathdotnet.com
|
// http://github.com/mathnet/mathnet-numerics
|
//
|
// Copyright (c) 2009-2014 Math.NET
|
//
|
// Permission is hereby granted, free of charge, to any person
|
// obtaining a copy of this software and associated documentation
|
// files (the "Software"), to deal in the Software without
|
// restriction, including without limitation the rights to use,
|
// copy, modify, merge, publish, distribute, sublicense, and/or sell
|
// copies of the Software, and to permit persons to whom the
|
// Software is furnished to do so, subject to the following
|
// conditions:
|
//
|
// The above copyright notice and this permission notice shall be
|
// included in all copies or substantial portions of the Software.
|
//
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
|
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
|
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
// OTHER DEALINGS IN THE SOFTWARE.
|
// </copyright>
|
|
using System.Collections.Generic;
|
using IStation.Numerics.Interpolation;
|
|
namespace IStation.Numerics
|
{
|
/// <summary>
|
/// Interpolation Factory.
|
/// </summary>
|
public static class Interpolate
|
{
|
/// <summary>
|
/// Creates an interpolation based on arbitrary points.
|
/// </summary>
|
/// <param name="points">The sample points t.</param>
|
/// <param name="values">The sample point values x(t).</param>
|
/// <returns>
|
/// An interpolation scheme optimized for the given sample points and values,
|
/// which can then be used to compute interpolations and extrapolations
|
/// on arbitrary points.
|
/// </returns>
|
/// <remarks>
|
/// if your data is already sorted in arrays, consider to use
|
/// IStation.Numerics.Interpolation.Barycentric.InterpolateRationalFloaterHormannSorted
|
/// instead, which is more efficient.
|
/// </remarks>
|
public static IInterpolation Common(IEnumerable<double> points, IEnumerable<double> values)
|
{
|
return Barycentric.InterpolateRationalFloaterHormann(points, values);
|
}
|
|
/// <summary>
|
/// Create a Floater-Hormann rational pole-free interpolation based on arbitrary points.
|
/// </summary>
|
/// <param name="points">The sample points t.</param>
|
/// <param name="values">The sample point values x(t).</param>
|
/// <returns>
|
/// An interpolation scheme optimized for the given sample points and values,
|
/// which can then be used to compute interpolations and extrapolations
|
/// on arbitrary points.
|
/// </returns>
|
/// <remarks>
|
/// if your data is already sorted in arrays, consider to use
|
/// IStation.Numerics.Interpolation.Barycentric.InterpolateRationalFloaterHormannSorted
|
/// instead, which is more efficient.
|
/// </remarks>
|
public static IInterpolation RationalWithoutPoles(IEnumerable<double> points, IEnumerable<double> values)
|
{
|
return Barycentric.InterpolateRationalFloaterHormann(points, values);
|
}
|
|
/// <summary>
|
/// Create a Bulirsch Stoer rational interpolation based on arbitrary points.
|
/// </summary>
|
/// <param name="points">The sample points t.</param>
|
/// <param name="values">The sample point values x(t).</param>
|
/// <returns>
|
/// An interpolation scheme optimized for the given sample points and values,
|
/// which can then be used to compute interpolations and extrapolations
|
/// on arbitrary points.
|
/// </returns>
|
/// <remarks>
|
/// if your data is already sorted in arrays, consider to use
|
/// IStation.Numerics.Interpolation.BulirschStoerRationalInterpolation.InterpolateSorted
|
/// instead, which is more efficient.
|
/// </remarks>
|
public static IInterpolation RationalWithPoles(IEnumerable<double> points, IEnumerable<double> values)
|
{
|
return BulirschStoerRationalInterpolation.Interpolate(points, values);
|
}
|
|
/// <summary>
|
/// Create a barycentric polynomial interpolation where the given sample points are equidistant.
|
/// </summary>
|
/// <param name="points">The sample points t, must be equidistant.</param>
|
/// <param name="values">The sample point values x(t).</param>
|
/// <returns>
|
/// An interpolation scheme optimized for the given sample points and values,
|
/// which can then be used to compute interpolations and extrapolations
|
/// on arbitrary points.
|
/// </returns>
|
/// <remarks>
|
/// if your data is already sorted in arrays, consider to use
|
/// IStation.Numerics.Interpolation.Barycentric.InterpolatePolynomialEquidistantSorted
|
/// instead, which is more efficient.
|
/// </remarks>
|
public static IInterpolation PolynomialEquidistant(IEnumerable<double> points, IEnumerable<double> values)
|
{
|
return Barycentric.InterpolatePolynomialEquidistant(points, values);
|
}
|
|
/// <summary>
|
/// Create a Neville polynomial interpolation based on arbitrary points.
|
/// If the points happen to be equidistant, consider to use the much more robust PolynomialEquidistant instead.
|
/// Otherwise, consider whether RationalWithoutPoles would not be a more robust alternative.
|
/// </summary>
|
/// <param name="points">The sample points t.</param>
|
/// <param name="values">The sample point values x(t).</param>
|
/// <returns>
|
/// An interpolation scheme optimized for the given sample points and values,
|
/// which can then be used to compute interpolations and extrapolations
|
/// on arbitrary points.
|
/// </returns>
|
/// <remarks>
|
/// if your data is already sorted in arrays, consider to use
|
/// IStation.Numerics.Interpolation.NevillePolynomialInterpolation.InterpolateSorted
|
/// instead, which is more efficient.
|
/// </remarks>
|
public static IInterpolation Polynomial(IEnumerable<double> points, IEnumerable<double> values)
|
{
|
return NevillePolynomialInterpolation.Interpolate(points, values);
|
}
|
|
/// <summary>
|
/// Create a piecewise linear interpolation based on arbitrary points.
|
/// </summary>
|
/// <param name="points">The sample points t.</param>
|
/// <param name="values">The sample point values x(t).</param>
|
/// <returns>
|
/// An interpolation scheme optimized for the given sample points and values,
|
/// which can then be used to compute interpolations and extrapolations
|
/// on arbitrary points.
|
/// </returns>
|
/// <remarks>
|
/// if your data is already sorted in arrays, consider to use
|
/// IStation.Numerics.Interpolation.LinearSpline.InterpolateSorted
|
/// instead, which is more efficient.
|
/// </remarks>
|
public static IInterpolation Linear(IEnumerable<double> points, IEnumerable<double> values)
|
{
|
return Interpolation.LinearSpline.Interpolate(points, values);
|
}
|
|
/// <summary>
|
/// Create piecewise log-linear interpolation based on arbitrary points.
|
/// </summary>
|
/// <param name="points">The sample points t.</param>
|
/// <param name="values">The sample point values x(t).</param>
|
/// <returns>
|
/// An interpolation scheme optimized for the given sample points and values,
|
/// which can then be used to compute interpolations and extrapolations
|
/// on arbitrary points.
|
/// </returns>
|
/// <remarks>
|
/// if your data is already sorted in arrays, consider to use
|
/// IStation.Numerics.Interpolation.LogLinear.InterpolateSorted
|
/// instead, which is more efficient.
|
/// </remarks>
|
public static IInterpolation LogLinear(IEnumerable<double> points, IEnumerable<double> values)
|
{
|
return Interpolation.LogLinear.Interpolate(points, values);
|
}
|
|
/// <summary>
|
/// Create an piecewise natural cubic spline interpolation based on arbitrary points,
|
/// with zero secondary derivatives at the boundaries.
|
/// </summary>
|
/// <param name="points">The sample points t.</param>
|
/// <param name="values">The sample point values x(t).</param>
|
/// <returns>
|
/// An interpolation scheme optimized for the given sample points and values,
|
/// which can then be used to compute interpolations and extrapolations
|
/// on arbitrary points.
|
/// </returns>
|
/// <remarks>
|
/// if your data is already sorted in arrays, consider to use
|
/// IStation.Numerics.Interpolation.CubicSpline.InterpolateNaturalSorted
|
/// instead, which is more efficient.
|
/// </remarks>
|
public static IInterpolation CubicSpline(IEnumerable<double> points, IEnumerable<double> values)
|
{
|
return Interpolation.CubicSpline.InterpolateNatural(points, values);
|
}
|
|
/// <summary>
|
/// Create a piecewise cubic Akima spline interpolation based on arbitrary points.
|
/// Akima splines are robust to outliers.
|
/// </summary>
|
/// <param name="points">The sample points t.</param>
|
/// <param name="values">The sample point values x(t).</param>
|
/// <returns>
|
/// An interpolation scheme optimized for the given sample points and values,
|
/// which can then be used to compute interpolations and extrapolations
|
/// on arbitrary points.
|
/// </returns>
|
/// <remarks>
|
/// if your data is already sorted in arrays, consider to use
|
/// IStation.Numerics.Interpolation.CubicSpline.InterpolateAkimaSorted
|
/// instead, which is more efficient.
|
/// </remarks>
|
public static IInterpolation CubicSplineRobust(IEnumerable<double> points, IEnumerable<double> values)
|
{
|
return Interpolation.CubicSpline.InterpolateAkima(points, values);
|
}
|
|
/// <summary>
|
/// Create a piecewise cubic monotone spline interpolation based on arbitrary points.
|
/// This is a shape-preserving spline with continuous first derivative.
|
/// </summary>
|
/// <param name="points">The sample points t.</param>
|
/// <param name="values">The sample point values x(t).</param>
|
/// <returns>
|
/// An interpolation scheme optimized for the given sample points and values,
|
/// which can then be used to compute interpolations and extrapolations
|
/// on arbitrary points.
|
/// </returns>
|
/// <remarks>
|
/// if your data is already sorted in arrays, consider to use
|
/// IStation.Numerics.Interpolation.CubicSpline.InterpolatePchipSorted
|
/// instead, which is more efficient.
|
/// </remarks>
|
public static IInterpolation CubicSplineMonotone(IEnumerable<double> points, IEnumerable<double> values)
|
{
|
return Interpolation.CubicSpline.InterpolatePchip(points, values);
|
}
|
|
/// <summary>
|
/// Create a piecewise cubic Hermite spline interpolation based on arbitrary points
|
/// and their slopes/first derivative.
|
/// </summary>
|
/// <param name="points">The sample points t.</param>
|
/// <param name="values">The sample point values x(t).</param>
|
/// <param name="firstDerivatives">The slope at the sample points. Optimized for arrays.</param>
|
/// <returns>
|
/// An interpolation scheme optimized for the given sample points and values,
|
/// which can then be used to compute interpolations and extrapolations
|
/// on arbitrary points.
|
/// </returns>
|
/// <remarks>
|
/// if your data is already sorted in arrays, consider to use
|
/// IStation.Numerics.Interpolation.CubicSpline.InterpolateHermiteSorted
|
/// instead, which is more efficient.
|
/// </remarks>
|
public static IInterpolation CubicSplineWithDerivatives(IEnumerable<double> points, IEnumerable<double> values, IEnumerable<double> firstDerivatives)
|
{
|
return Interpolation.CubicSpline.InterpolateHermite(points, values, firstDerivatives);
|
}
|
|
/// <summary>
|
/// Create a step-interpolation based on arbitrary points.
|
/// </summary>
|
/// <param name="points">The sample points t.</param>
|
/// <param name="values">The sample point values x(t).</param>
|
/// <returns>
|
/// An interpolation scheme optimized for the given sample points and values,
|
/// which can then be used to compute interpolations and extrapolations
|
/// on arbitrary points.
|
/// </returns>
|
/// <remarks>
|
/// if your data is already sorted in arrays, consider to use
|
/// IStation.Numerics.Interpolation.StepInterpolation.InterpolateSorted
|
/// instead, which is more efficient.
|
/// </remarks>
|
public static IInterpolation Step(IEnumerable<double> points, IEnumerable<double> values)
|
{
|
return StepInterpolation.Interpolate(points, values);
|
}
|
}
|
}
|