// <copyright file="LocallyWeightedRegression.cs" company="Math.NET">
|
// Math.NET Numerics, part of the Math.NET Project
|
// http://numerics.mathdotnet.com
|
// http://github.com/mathnet/mathnet-numerics
|
//
|
// Copyright (c) 2009-2013 Math.NET
|
//
|
// Permission is hereby granted, free of charge, to any person
|
// obtaining a copy of this software and associated documentation
|
// files (the "Software"), to deal in the Software without
|
// restriction, including without limitation the rights to use,
|
// copy, modify, merge, publish, distribute, sublicense, and/or sell
|
// copies of the Software, and to permit persons to whom the
|
// Software is furnished to do so, subject to the following
|
// conditions:
|
//
|
// The above copyright notice and this permission notice shall be
|
// included in all copies or substantial portions of the Software.
|
//
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
|
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
|
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
// OTHER DEALINGS IN THE SOFTWARE.
|
// </copyright>
|
|
using System;
|
using System.Collections.Generic;
|
using IStation.Numerics.LinearAlgebra;
|
|
namespace IStation.Numerics.LinearRegression
|
{
|
public static class WeightedRegression
|
{
|
/// <summary>
|
/// Weighted Linear Regression using normal equations.
|
/// </summary>
|
/// <param name="x">Predictor matrix X</param>
|
/// <param name="y">Response vector Y</param>
|
/// <param name="w">Weight matrix W, usually diagonal with an entry for each predictor (row).</param>
|
public static Vector<T> Weighted<T>(Matrix<T> x, Vector<T> y, Matrix<T> w) where T : struct, IEquatable<T>, IFormattable
|
{
|
return x.TransposeThisAndMultiply(w*x).Cholesky().Solve(x.TransposeThisAndMultiply(w*y));
|
}
|
|
/// <summary>
|
/// Weighted Linear Regression using normal equations.
|
/// </summary>
|
/// <param name="x">Predictor matrix X</param>
|
/// <param name="y">Response matrix Y</param>
|
/// <param name="w">Weight matrix W, usually diagonal with an entry for each predictor (row).</param>
|
public static Matrix<T> Weighted<T>(Matrix<T> x, Matrix<T> y, Matrix<T> w) where T : struct, IEquatable<T>, IFormattable
|
{
|
return x.TransposeThisAndMultiply(w*x).Cholesky().Solve(x.TransposeThisAndMultiply(w*y));
|
}
|
|
/// <summary>
|
/// Weighted Linear Regression using normal equations.
|
/// </summary>
|
/// <param name="x">Predictor matrix X</param>
|
/// <param name="y">Response vector Y</param>
|
/// <param name="w">Weight matrix W, usually diagonal with an entry for each predictor (row).</param>
|
/// <param name="intercept">True if an intercept should be added as first artificial predictor value. Default = false.</param>
|
public static T[] Weighted<T>(T[][] x, T[] y, T[] w, bool intercept = false) where T : struct, IEquatable<T>, IFormattable
|
{
|
var predictor = Matrix<T>.Build.DenseOfRowArrays(x);
|
if (intercept)
|
{
|
predictor = predictor.InsertColumn(0, Vector<T>.Build.Dense(predictor.RowCount, Vector<T>.One));
|
}
|
|
var response = Vector<T>.Build.Dense(y);
|
var weights = Matrix<T>.Build.Diagonal(w);
|
return predictor.TransposeThisAndMultiply(weights*predictor).Cholesky().Solve(predictor.TransposeThisAndMultiply(weights*response)).ToArray();
|
}
|
|
/// <summary>
|
/// Weighted Linear Regression using normal equations.
|
/// </summary>
|
/// <param name="samples">List of sample vectors (predictor) together with their response.</param>
|
/// <param name="weights">List of weights, one for each sample.</param>
|
/// <param name="intercept">True if an intercept should be added as first artificial predictor value. Default = false.</param>
|
public static T[] Weighted<T>(IEnumerable<Tuple<T[], T>> samples, T[] weights, bool intercept = false) where T : struct, IEquatable<T>, IFormattable
|
{
|
var xy = samples.UnpackSinglePass();
|
return Weighted(xy.Item1, xy.Item2, weights, intercept);
|
}
|
|
/// <summary>
|
/// Locally-Weighted Linear Regression using normal equations.
|
/// </summary>
|
[Obsolete("Warning: This function is here to stay but its signature will likely change. Opting out from semantic versioning.")]
|
public static Vector<T> Local<T>(Matrix<T> x, Vector<T> y, Vector<T> t, double radius, Func<double, T> kernel) where T : struct, IEquatable<T>, IFormattable
|
{
|
// TODO: Weird kernel definition
|
var w = Matrix<T>.Build.Dense(x.RowCount, x.RowCount);
|
for (int i = 0; i < x.RowCount; i++)
|
{
|
w.At(i, i, kernel(Distance.Euclidean(t, x.Row(i))/radius));
|
}
|
|
return Weighted(x, y, w);
|
}
|
|
/// <summary>
|
/// Locally-Weighted Linear Regression using normal equations.
|
/// </summary>
|
[Obsolete("Warning: This function is here to stay but its signature will likely change. Opting out from semantic versioning.")]
|
public static Matrix<T> Local<T>(Matrix<T> x, Matrix<T> y, Vector<T> t, double radius, Func<double, T> kernel) where T : struct, IEquatable<T>, IFormattable
|
{
|
// TODO: Weird kernel definition
|
var w = Matrix<T>.Build.Dense(x.RowCount, x.RowCount);
|
for (int i = 0; i < x.RowCount; i++)
|
{
|
w.At(i, i, kernel(Distance.Euclidean(t, x.Row(i))/radius));
|
}
|
|
return Weighted(x, y, w);
|
}
|
|
[Obsolete("Warning: This function is here to stay but will likely be refactored and/or moved to another place. Opting out from semantic versioning.")]
|
public static double GaussianKernel(double normalizedDistance)
|
{
|
return Math.Exp(-0.5*normalizedDistance*normalizedDistance);
|
}
|
}
|
}
|