// <copyright file="ConjugateGradientMinimizer.cs" company="Math.NET">
|
// Math.NET Numerics, part of the Math.NET Project
|
// http://numerics.mathdotnet.com
|
// http://github.com/mathnet/mathnet-numerics
|
//
|
// Copyright (c) 2009-2017 Math.NET
|
//
|
// Permission is hereby granted, free of charge, to any person
|
// obtaining a copy of this software and associated documentation
|
// files (the "Software"), to deal in the Software without
|
// restriction, including without limitation the rights to use,
|
// copy, modify, merge, publish, distribute, sublicense, and/or sell
|
// copies of the Software, and to permit persons to whom the
|
// Software is furnished to do so, subject to the following
|
// conditions:
|
//
|
// The above copyright notice and this permission notice shall be
|
// included in all copies or substantial portions of the Software.
|
//
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
|
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
|
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
// OTHER DEALINGS IN THE SOFTWARE.
|
// </copyright>
|
|
using System;
|
using IStation.Numerics.LinearAlgebra;
|
using IStation.Numerics.Optimization.LineSearch;
|
|
namespace IStation.Numerics.Optimization
|
{
|
public class ConjugateGradientMinimizer : IUnconstrainedMinimizer
|
{
|
public double GradientTolerance { get; set; }
|
public int MaximumIterations { get; set; }
|
|
public ConjugateGradientMinimizer(double gradientTolerance, int maximumIterations)
|
{
|
GradientTolerance = gradientTolerance;
|
MaximumIterations = maximumIterations;
|
}
|
|
public MinimizationResult FindMinimum(IObjectiveFunction objective, Vector<double> initialGuess)
|
{
|
return Minimum(objective, initialGuess, GradientTolerance, MaximumIterations);
|
}
|
|
public static MinimizationResult Minimum(IObjectiveFunction objective, Vector<double> initialGuess, double gradientTolerance=1e-8, int maxIterations=1000)
|
{
|
if (!objective.IsGradientSupported)
|
{
|
throw new IncompatibleObjectiveException("Gradient not supported in objective function, but required for ConjugateGradient minimization.");
|
}
|
|
objective.EvaluateAt(initialGuess);
|
var gradient = objective.Gradient;
|
ValidateGradient(objective);
|
|
// Check that we're not already done
|
if (gradient.Norm(2.0) < gradientTolerance)
|
{
|
return new MinimizationResult(objective, 0, ExitCondition.AbsoluteGradient);
|
}
|
|
// Set up line search algorithm
|
var lineSearcher = new WeakWolfeLineSearch(1e-4, 0.1, 1e-4, 1000);
|
|
// First step
|
var steepestDirection = -gradient;
|
var searchDirection = steepestDirection;
|
double initialStepSize = 100 * gradientTolerance / (gradient * gradient);
|
|
LineSearchResult result;
|
try
|
{
|
result = lineSearcher.FindConformingStep(objective, searchDirection, initialStepSize);
|
}
|
catch (Exception e)
|
{
|
throw new InnerOptimizationException("Line search failed.", e);
|
}
|
|
objective = result.FunctionInfoAtMinimum;
|
ValidateGradient(objective);
|
|
double stepSize = result.FinalStep;
|
|
// Subsequent steps
|
int iterations = 1;
|
int totalLineSearchSteps = result.Iterations;
|
int iterationsWithNontrivialLineSearch = result.Iterations > 0 ? 0 : 1;
|
int steepestDescentResets = 0;
|
while (objective.Gradient.Norm(2.0) >= gradientTolerance && iterations < maxIterations)
|
{
|
var previousSteepestDirection = steepestDirection;
|
steepestDirection = -objective.Gradient;
|
var searchDirectionAdjuster = Math.Max(0, steepestDirection*(steepestDirection - previousSteepestDirection)/(previousSteepestDirection*previousSteepestDirection));
|
searchDirection = steepestDirection + searchDirectionAdjuster * searchDirection;
|
if (searchDirection * objective.Gradient >= 0)
|
{
|
searchDirection = steepestDirection;
|
steepestDescentResets += 1;
|
}
|
|
try
|
{
|
result = lineSearcher.FindConformingStep(objective, searchDirection, stepSize);
|
}
|
catch (Exception e)
|
{
|
throw new InnerOptimizationException("Line search failed.", e);
|
}
|
|
iterationsWithNontrivialLineSearch += result.Iterations == 0 ? 1 : 0;
|
totalLineSearchSteps += result.Iterations;
|
stepSize = result.FinalStep;
|
objective = result.FunctionInfoAtMinimum;
|
iterations += 1;
|
}
|
|
if (iterations == maxIterations)
|
{
|
throw new MaximumIterationsException(FormattableString.Invariant($"Maximum iterations ({maxIterations}) reached."));
|
}
|
|
return new MinimizationWithLineSearchResult(objective, iterations, ExitCondition.AbsoluteGradient, totalLineSearchSteps, iterationsWithNontrivialLineSearch);
|
}
|
|
static void ValidateGradient(IObjectiveFunctionEvaluation objective)
|
{
|
foreach (var x in objective.Gradient)
|
{
|
if (Double.IsNaN(x) || Double.IsInfinity(x))
|
{
|
throw new EvaluationException("Non-finite gradient returned.", objective);
|
}
|
}
|
}
|
|
static void ValidateObjective(IObjectiveFunctionEvaluation objective)
|
{
|
if (Double.IsNaN(objective.Value) || Double.IsInfinity(objective.Value))
|
{
|
throw new EvaluationException("Non-finite objective function returned.", objective);
|
}
|
}
|
}
|
}
|