ningshuxia
2022-12-12 e78f5936fee9ab4fff600515bb20a41a28f329c4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
// <copyright file="NelderMeadSimplex.cs" company="Math.NET">
// Math.NET Numerics, part of the Math.NET Project
// http://numerics.mathdotnet.com
// http://github.com/mathnet/mathnet-numerics
//
// Copyright (c) 2009-2017 Math.NET
//
// Permission is hereby granted, free of charge, to any person
// obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without
// restriction, including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following
// conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
// </copyright>
 
// Converted from code released with a MIT license available at https://code.google.com/p/nelder-mead-simplex/
 
using System;
using IStation.Numerics.LinearAlgebra;
 
namespace IStation.Numerics.Optimization
{
    /// <summary>
    /// Class implementing the Nelder-Mead simplex algorithm, used to find a minima when no gradient is available.
    /// Called fminsearch() in Matlab. A description of the algorithm can be found at
    /// http://se.mathworks.com/help/matlab/math/optimizing-nonlinear-functions.html#bsgpq6p-11
    /// or
    /// https://en.wikipedia.org/wiki/Nelder%E2%80%93Mead_method
    /// </summary>
    public sealed class NelderMeadSimplex : IUnconstrainedMinimizer
    {
        static readonly double JITTER = 1e-10d;           // a small value used to protect against floating point noise
 
        public double ConvergenceTolerance { get; set; }
        public int MaximumIterations { get; set; }
 
        public NelderMeadSimplex(double convergenceTolerance, int maximumIterations)
        {
            ConvergenceTolerance = convergenceTolerance;
            MaximumIterations = maximumIterations;
        }
 
        /// <summary>
        /// Finds the minimum of the objective function without an initial perturbation, the default values used
        /// by fminsearch() in Matlab are used instead
        /// http://se.mathworks.com/help/matlab/math/optimizing-nonlinear-functions.html#bsgpq6p-11
        /// </summary>
        /// <param name="objectiveFunction">The objective function, no gradient or hessian needed</param>
        /// <param name="initialGuess">The initial guess</param>
        /// <returns>The minimum point</returns>
        public MinimizationResult FindMinimum(IObjectiveFunction objectiveFunction, Vector<double> initialGuess)
        {
            return Minimum(objectiveFunction, initialGuess, ConvergenceTolerance, MaximumIterations);
        }
 
        /// <summary>
        /// Finds the minimum of the objective function with an initial perturbation
        /// </summary>
        /// <param name="objectiveFunction">The objective function, no gradient or hessian needed</param>
        /// <param name="initialGuess">The initial guess</param>
        /// <param name="initalPertubation">The initial perturbation</param>
        /// <returns>The minimum point</returns>
        public MinimizationResult FindMinimum(IObjectiveFunction objectiveFunction, Vector<double> initialGuess, Vector<double> initalPertubation)
        {
            return Minimum(objectiveFunction, initialGuess, initalPertubation, ConvergenceTolerance, MaximumIterations);
        }
 
        /// <summary>
        /// Finds the minimum of the objective function without an initial perturbation, the default values used
        /// by fminsearch() in Matlab are used instead
        /// http://se.mathworks.com/help/matlab/math/optimizing-nonlinear-functions.html#bsgpq6p-11
        /// </summary>
        /// <param name="objectiveFunction">The objective function, no gradient or hessian needed</param>
        /// <param name="initialGuess">The initial guess</param>
        /// <returns>The minimum point</returns>
        public static MinimizationResult Minimum(IObjectiveFunction objectiveFunction, Vector<double> initialGuess, double convergenceTolerance=1e-8, int maximumIterations=1000)
        {
            var initalPertubation = new LinearAlgebra.Double.DenseVector(initialGuess.Count);
            for (int i = 0; i < initialGuess.Count; i++)
            {
                initalPertubation[i] = initialGuess[i] == 0.0 ? 0.00025 : initialGuess[i] * 0.05;
            }
            return Minimum(objectiveFunction, initialGuess, initalPertubation, convergenceTolerance, maximumIterations);
        }
 
        /// <summary>
        /// Finds the minimum of the objective function with an initial perturbation
        /// </summary>
        /// <param name="objectiveFunction">The objective function, no gradient or hessian needed</param>
        /// <param name="initialGuess">The initial guess</param>
        /// <param name="initalPertubation">The initial perturbation</param>
        /// <returns>The minimum point</returns>
        public static MinimizationResult Minimum(IObjectiveFunction objectiveFunction, Vector<double> initialGuess, Vector<double> initalPertubation, double convergenceTolerance=1e-8, int maximumIterations=1000)
        {
            // confirm that we are in a position to commence
            if (objectiveFunction == null)
                throw new ArgumentNullException(nameof(objectiveFunction),"ObjectiveFunction must be set to a valid ObjectiveFunctionDelegate");
 
            if (initialGuess == null)
                throw new ArgumentNullException(nameof(initialGuess), "initialGuess must be initialized");
 
            if (initalPertubation == null)
                throw new ArgumentNullException(nameof(initalPertubation), "initalPertubation must be initialized, if unknown use overloaded version of FindMinimum()");
 
            SimplexConstant[] simplexConstants = SimplexConstant.CreateSimplexConstantsFromVectors(initialGuess,initalPertubation);
 
            // create the initial simplex
            int numDimensions = simplexConstants.Length;
            int numVertices = numDimensions + 1;
            Vector<double>[] vertices = InitializeVertices(simplexConstants);
            double[] errorValues = new double[numVertices];
 
            int evaluationCount = 0;
            ExitCondition exitCondition = ExitCondition.None;
            ErrorProfile errorProfile;
 
            errorValues = InitializeErrorValues(vertices, objectiveFunction);
            int numTimesHasConverged = 0;
 
            // iterate until we converge, or complete our permitted number of iterations
            while (true)
            {
                errorProfile = EvaluateSimplex(errorValues);
 
                // see if the range in point heights is small enough to exit
                // to handle the case when the function is symmetrical and extra iteration is performed
                if (HasConverged(convergenceTolerance, errorProfile, errorValues))
                {
                    numTimesHasConverged++;
                }
                else
                {
                    numTimesHasConverged = 0;
                }
                if (numTimesHasConverged == 2)
                {
                    exitCondition = ExitCondition.Converged;
                    break;
                }
 
                // attempt a reflection of the simplex
                double reflectionPointValue = TryToScaleSimplex(-1.0, ref errorProfile, vertices, errorValues, objectiveFunction);
                ++evaluationCount;
                if (reflectionPointValue <= errorValues[errorProfile.LowestIndex])
                {
                    // it's better than the best point, so attempt an expansion of the simplex
                    double expansionPointValue = TryToScaleSimplex(2.0, ref errorProfile, vertices, errorValues, objectiveFunction);
                    ++evaluationCount;
                }
                else if (reflectionPointValue >= errorValues[errorProfile.NextHighestIndex])
                {
                    // it would be worse than the second best point, so attempt a contraction to look
                    // for an intermediate point
                    double currentWorst = errorValues[errorProfile.HighestIndex];
                    double contractionPointValue = TryToScaleSimplex(0.5, ref errorProfile, vertices, errorValues, objectiveFunction);
                    ++evaluationCount;
                    if (contractionPointValue >= currentWorst)
                    {
                        // that would be even worse, so let's try to contract uniformly towards the low point;
                        // don't bother to update the error profile, we'll do it at the start of the
                        // next iteration
                        ShrinkSimplex(errorProfile, vertices, errorValues, objectiveFunction);
                        evaluationCount += numVertices; // that required one function evaluation for each vertex; keep track
                    }
                }
                // check to see if we have exceeded our alloted number of evaluations
                if (evaluationCount >= maximumIterations)
                {
                    throw new MaximumIterationsException(FormattableString.Invariant($"Maximum iterations ({maximumIterations}) reached."));
                }
            }
            objectiveFunction.EvaluateAt(vertices[errorProfile.LowestIndex]);
            var regressionResult = new MinimizationResult(objectiveFunction, evaluationCount, exitCondition);
            return regressionResult;
        }
 
        /// <summary>
        /// Evaluate the objective function at each vertex to create a corresponding
        /// list of error values for each vertex
        /// </summary>
        /// <param name="vertices"></param>
        /// <param name="objectiveFunction"></param>
        /// <returns></returns>
        static double[] InitializeErrorValues(Vector<double>[] vertices, IObjectiveFunction objectiveFunction)
        {
            double[] errorValues = new double[vertices.Length];
            for (int i = 0; i < vertices.Length; i++)
            {
                objectiveFunction.EvaluateAt(vertices[i]);
                errorValues[i] = objectiveFunction.Value;
            }
            return errorValues;
        }
 
        /// <summary>
        /// Check whether the points in the error profile have so little range that we
        /// consider ourselves to have converged
        /// </summary>
        /// <param name="convergenceTolerance"></param>
        /// <param name="errorProfile"></param>
        /// <param name="errorValues"></param>
        /// <returns></returns>
        static bool HasConverged(double convergenceTolerance, ErrorProfile errorProfile, double[] errorValues)
        {
            double range = 2 * Math.Abs(errorValues[errorProfile.HighestIndex] - errorValues[errorProfile.LowestIndex]) /
                (Math.Abs(errorValues[errorProfile.HighestIndex]) + Math.Abs(errorValues[errorProfile.LowestIndex]) + JITTER);
 
            if (range < convergenceTolerance)
            {
                return true;
            }
            else
            {
                return false;
            }
        }
 
        /// <summary>
        /// Examine all error values to determine the ErrorProfile
        /// </summary>
        /// <param name="errorValues"></param>
        /// <returns></returns>
        static ErrorProfile EvaluateSimplex(double[] errorValues)
        {
            ErrorProfile errorProfile = new ErrorProfile();
            if (errorValues[0] > errorValues[1])
            {
                errorProfile.HighestIndex = 0;
                errorProfile.NextHighestIndex = 1;
            }
            else
            {
                errorProfile.HighestIndex = 1;
                errorProfile.NextHighestIndex = 0;
            }
 
            for (int index = 0; index < errorValues.Length; index++)
            {
                double errorValue = errorValues[index];
                if (errorValue <= errorValues[errorProfile.LowestIndex])
                {
                    errorProfile.LowestIndex = index;
                }
                if (errorValue > errorValues[errorProfile.HighestIndex])
                {
                    errorProfile.NextHighestIndex = errorProfile.HighestIndex; // downgrade the current highest to next highest
                    errorProfile.HighestIndex = index;
                }
                else if (errorValue > errorValues[errorProfile.NextHighestIndex] && index != errorProfile.HighestIndex)
                {
                    errorProfile.NextHighestIndex = index;
                }
            }
 
            return errorProfile;
        }
 
        /// <summary>
        /// Construct an initial simplex, given starting guesses for the constants, and
        /// initial step sizes for each dimension
        /// </summary>
        /// <param name="simplexConstants"></param>
        /// <returns></returns>
        static Vector<double>[] InitializeVertices(SimplexConstant[] simplexConstants)
        {
            int numDimensions = simplexConstants.Length;
            Vector<double>[] vertices = new Vector<double>[numDimensions + 1];
 
            // define one point of the simplex as the given initial guesses
            var p0 = new LinearAlgebra.Double.DenseVector(numDimensions);
            for (int i = 0; i < numDimensions; i++)
            {
                p0[i] = simplexConstants[i].Value;
            }
 
            // now fill in the vertices, creating the additional points as:
            // P(i) = P(0) + Scale(i) * UnitVector(i)
            vertices[0] = p0;
            for (int i = 0; i < numDimensions; i++)
            {
                double scale = simplexConstants[i].InitialPerturbation;
                Vector<double> unitVector = new LinearAlgebra.Double.DenseVector(numDimensions);
                unitVector[i] = 1;
                vertices[i + 1] = p0.Add(unitVector.Multiply(scale));
            }
            return vertices;
        }
 
        /// <summary>
        /// Test a scaling operation of the high point, and replace it if it is an improvement
        /// </summary>
        /// <param name="scaleFactor"></param>
        /// <param name="errorProfile"></param>
        /// <param name="vertices"></param>
        /// <param name="errorValues"></param>
        /// <param name="objectiveFunction"></param>
        /// <returns></returns>
        static double TryToScaleSimplex(double scaleFactor, ref ErrorProfile errorProfile, Vector<double>[] vertices,
                                          double[] errorValues, IObjectiveFunction objectiveFunction)
        {
            // find the centroid through which we will reflect
            Vector<double> centroid = ComputeCentroid(vertices, errorProfile);
 
            // define the vector from the centroid to the high point
            Vector<double> centroidToHighPoint = vertices[errorProfile.HighestIndex].Subtract(centroid);
 
            // scale and position the vector to determine the new trial point
            Vector<double> newPoint = centroidToHighPoint.Multiply(scaleFactor).Add(centroid);
 
            // evaluate the new point
            objectiveFunction.EvaluateAt(newPoint);
            double newErrorValue = objectiveFunction.Value;
 
            // if it's better, replace the old high point
            if (newErrorValue < errorValues[errorProfile.HighestIndex])
            {
                vertices[errorProfile.HighestIndex] = newPoint;
                errorValues[errorProfile.HighestIndex] = newErrorValue;
            }
 
            return newErrorValue;
        }
 
        /// <summary>
        /// Contract the simplex uniformly around the lowest point
        /// </summary>
        /// <param name="errorProfile"></param>
        /// <param name="vertices"></param>
        /// <param name="errorValues"></param>
        /// <param name="objectiveFunction"></param>
        static void ShrinkSimplex(ErrorProfile errorProfile, Vector<double>[] vertices, double[] errorValues,
                                      IObjectiveFunction objectiveFunction)
        {
            Vector<double> lowestVertex = vertices[errorProfile.LowestIndex];
            for (int i = 0; i < vertices.Length; i++)
            {
                if (i != errorProfile.LowestIndex)
                {
                    vertices[i] = (vertices[i].Add(lowestVertex)).Multiply(0.5);
                    objectiveFunction.EvaluateAt(vertices[i]);
                    errorValues[i] = objectiveFunction.Value;
                }
            }
        }
 
        /// <summary>
        /// Compute the centroid of all points except the worst
        /// </summary>
        /// <param name="vertices"></param>
        /// <param name="errorProfile"></param>
        /// <returns></returns>
        static Vector<double> ComputeCentroid(Vector<double>[] vertices, ErrorProfile errorProfile)
        {
            int numVertices = vertices.Length;
            // find the centroid of all points except the worst one
            Vector<double> centroid = new LinearAlgebra.Double.DenseVector(numVertices - 1);
            for (int i = 0; i < numVertices; i++)
            {
                if (i != errorProfile.HighestIndex)
                {
                    centroid = centroid.Add(vertices[i]);
                }
            }
            return centroid.Multiply(1.0d / (numVertices - 1));
        }
 
        sealed class SimplexConstant
        {
            public SimplexConstant(double value, double initialPerturbation)
            {
                Value = value;
                InitialPerturbation = initialPerturbation;
            }
 
            /// <summary>
            /// The value of the constant
            /// </summary>
            public double Value { get; }
 
            // The size of the initial perturbation
            public double InitialPerturbation { get; }
 
            public static SimplexConstant[] CreateSimplexConstantsFromVectors(Vector<double> initialGuess, Vector<double> initialPertubation)
            {
                var constants = new SimplexConstant[initialGuess.Count];
                for (int i = 0; i < constants.Length;i++ )
                {
                    constants[i] = new SimplexConstant(initialGuess[i], initialPertubation[i]);
                }
                return constants;
            }
        }
 
        sealed class ErrorProfile
        {
            public int HighestIndex { get; set; }
            public int NextHighestIndex { get; set; }
            public int LowestIndex { get; set; }
        }
    }
}