// <copyright file="Weibull.cs" company="Math.NET">
|
// Math.NET Numerics, part of the Math.NET Project
|
// http://numerics.mathdotnet.com
|
// http://github.com/mathnet/mathnet-numerics
|
//
|
// Copyright (c) 2009-2013 Math.NET
|
//
|
// Permission is hereby granted, free of charge, to any person
|
// obtaining a copy of this software and associated documentation
|
// files (the "Software"), to deal in the Software without
|
// restriction, including without limitation the rights to use,
|
// copy, modify, merge, publish, distribute, sublicense, and/or sell
|
// copies of the Software, and to permit persons to whom the
|
// Software is furnished to do so, subject to the following
|
// conditions:
|
//
|
// The above copyright notice and this permission notice shall be
|
// included in all copies or substantial portions of the Software.
|
//
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
|
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
|
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
// OTHER DEALINGS IN THE SOFTWARE.
|
// </copyright>
|
|
using System;
|
using System.Collections.Generic;
|
using System.Linq;
|
using IStation.Numerics.Random;
|
using IStation.Numerics.Threading;
|
|
namespace IStation.Numerics.Distributions
|
{
|
/// <summary>
|
/// Continuous Univariate Weibull distribution.
|
/// For details about this distribution, see
|
/// <a href="http://en.wikipedia.org/wiki/Weibull_distribution">Wikipedia - Weibull distribution</a>.
|
/// </summary>
|
/// <remarks>
|
/// The Weibull distribution is parametrized by a shape and scale parameter.
|
/// </remarks>
|
public class Weibull : IContinuousDistribution
|
{
|
System.Random _random;
|
|
readonly double _shape;
|
readonly double _scale;
|
|
/// <summary>
|
/// Reusable intermediate result 1 / (_scale ^ _shape)
|
/// </summary>
|
/// <remarks>
|
/// By caching this parameter we can get slightly better numerics precision
|
/// in certain constellations without any additional computations.
|
/// </remarks>
|
readonly double _scalePowShapeInv;
|
|
/// <summary>
|
/// Initializes a new instance of the Weibull class.
|
/// </summary>
|
/// <param name="shape">The shape (k) of the Weibull distribution. Range: k > 0.</param>
|
/// <param name="scale">The scale (λ) of the Weibull distribution. Range: λ > 0.</param>
|
public Weibull(double shape, double scale)
|
{
|
if (!IsValidParameterSet(shape, scale))
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
|
_random = SystemRandomSource.Default;
|
_shape = shape;
|
_scale = scale;
|
_scalePowShapeInv = Math.Pow(scale, -shape);
|
}
|
|
/// <summary>
|
/// Initializes a new instance of the Weibull class.
|
/// </summary>
|
/// <param name="shape">The shape (k) of the Weibull distribution. Range: k > 0.</param>
|
/// <param name="scale">The scale (λ) of the Weibull distribution. Range: λ > 0.</param>
|
/// <param name="randomSource">The random number generator which is used to draw random samples.</param>
|
public Weibull(double shape, double scale, System.Random randomSource)
|
{
|
if (!IsValidParameterSet(shape, scale))
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
|
_random = randomSource ?? SystemRandomSource.Default;
|
_shape = shape;
|
_scale = scale;
|
_scalePowShapeInv = Math.Pow(scale, -shape);
|
}
|
|
/// <summary>
|
/// A string representation of the distribution.
|
/// </summary>
|
/// <returns>a string representation of the distribution.</returns>
|
public override string ToString()
|
{
|
return $"Weibull(k = {_shape}, λ = {_scale})";
|
}
|
|
/// <summary>
|
/// Tests whether the provided values are valid parameters for this distribution.
|
/// </summary>
|
/// <param name="shape">The shape (k) of the Weibull distribution. Range: k > 0.</param>
|
/// <param name="scale">The scale (λ) of the Weibull distribution. Range: λ > 0.</param>
|
public static bool IsValidParameterSet(double shape, double scale)
|
{
|
return shape > 0.0 && scale > 0.0;
|
}
|
|
/// <summary>
|
/// Gets the shape (k) of the Weibull distribution. Range: k > 0.
|
/// </summary>
|
public double Shape => _shape;
|
|
/// <summary>
|
/// Gets the scale (λ) of the Weibull distribution. Range: λ > 0.
|
/// </summary>
|
public double Scale => _scale;
|
|
/// <summary>
|
/// Gets or sets the random number generator which is used to draw random samples.
|
/// </summary>
|
public System.Random RandomSource
|
{
|
get => _random;
|
set => _random = value ?? SystemRandomSource.Default;
|
}
|
|
/// <summary>
|
/// Gets the mean of the Weibull distribution.
|
/// </summary>
|
public double Mean => _scale*SpecialFunctions.Gamma(1.0 + (1.0/_shape));
|
|
/// <summary>
|
/// Gets the variance of the Weibull distribution.
|
/// </summary>
|
public double Variance => (_scale*_scale*SpecialFunctions.Gamma(1.0 + (2.0/_shape))) - (Mean*Mean);
|
|
/// <summary>
|
/// Gets the standard deviation of the Weibull distribution.
|
/// </summary>
|
public double StdDev => Math.Sqrt(Variance);
|
|
/// <summary>
|
/// Gets the entropy of the Weibull distribution.
|
/// </summary>
|
public double Entropy => (Constants.EulerMascheroni*(1.0 - (1.0/_shape))) + Math.Log(_scale/_shape) + 1.0;
|
|
/// <summary>
|
/// Gets the skewness of the Weibull distribution.
|
/// </summary>
|
public double Skewness
|
{
|
get
|
{
|
double mu = Mean;
|
double sigma = StdDev;
|
double sigma2 = sigma*sigma;
|
double sigma3 = sigma2*sigma;
|
return ((_scale*_scale*_scale*SpecialFunctions.Gamma(1.0 + (3.0/_shape))) - (3.0*sigma2*mu) - (mu*mu*mu))/sigma3;
|
}
|
}
|
|
/// <summary>
|
/// Gets the mode of the Weibull distribution.
|
/// </summary>
|
public double Mode
|
{
|
get
|
{
|
if (_shape <= 1.0)
|
{
|
return 0.0;
|
}
|
|
return _scale*Math.Pow((_shape - 1.0)/_shape, 1.0/_shape);
|
}
|
}
|
|
/// <summary>
|
/// Gets the median of the Weibull distribution.
|
/// </summary>
|
public double Median => _scale*Math.Pow(Constants.Ln2, 1.0/_shape);
|
|
/// <summary>
|
/// Gets the minimum of the Weibull distribution.
|
/// </summary>
|
public double Minimum => 0.0;
|
|
/// <summary>
|
/// Gets the maximum of the Weibull distribution.
|
/// </summary>
|
public double Maximum => double.PositiveInfinity;
|
|
/// <summary>
|
/// Computes the probability density of the distribution (PDF) at x, i.e. ∂P(X ≤ x)/∂x.
|
/// </summary>
|
/// <param name="x">The location at which to compute the density.</param>
|
/// <returns>the density at <paramref name="x"/>.</returns>
|
public double Density(double x)
|
{
|
if (x >= 0.0)
|
{
|
if (x == 0.0 && _shape == 1.0)
|
{
|
return _shape/_scale;
|
}
|
|
return _shape*Math.Pow(x/_scale, _shape - 1.0)*Math.Exp(-Math.Pow(x, _shape)*_scalePowShapeInv)/_scale;
|
}
|
|
return 0.0;
|
}
|
|
/// <summary>
|
/// Computes the log probability density of the distribution (lnPDF) at x, i.e. ln(∂P(X ≤ x)/∂x).
|
/// </summary>
|
/// <param name="x">The location at which to compute the log density.</param>
|
/// <returns>the log density at <paramref name="x"/>.</returns>
|
public double DensityLn(double x)
|
{
|
if (x >= 0.0)
|
{
|
if (x == 0.0 && _shape == 1.0)
|
{
|
return Math.Log(_shape) - Math.Log(_scale);
|
}
|
|
return Math.Log(_shape) + ((_shape - 1.0)*Math.Log(x/_scale)) - (Math.Pow(x, _shape)*_scalePowShapeInv) - Math.Log(_scale);
|
}
|
|
return double.NegativeInfinity;
|
}
|
|
/// <summary>
|
/// Computes the cumulative distribution (CDF) of the distribution at x, i.e. P(X ≤ x).
|
/// </summary>
|
/// <param name="x">The location at which to compute the cumulative distribution function.</param>
|
/// <returns>the cumulative distribution at location <paramref name="x"/>.</returns>
|
public double CumulativeDistribution(double x)
|
{
|
if (x < 0.0)
|
{
|
return 0.0;
|
}
|
|
return -SpecialFunctions.ExponentialMinusOne(-Math.Pow(x, _shape)*_scalePowShapeInv);
|
}
|
|
/// <summary>
|
/// Generates a sample from the Weibull distribution.
|
/// </summary>
|
/// <returns>a sample from the distribution.</returns>
|
public double Sample()
|
{
|
return SampleUnchecked(_random, _shape, _scale);
|
}
|
|
/// <summary>
|
/// Fills an array with samples generated from the distribution.
|
/// </summary>
|
public void Samples(double[] values)
|
{
|
SamplesUnchecked(_random, values, _shape, _scale);
|
}
|
|
/// <summary>
|
/// Generates a sequence of samples from the Weibull distribution.
|
/// </summary>
|
/// <returns>a sequence of samples from the distribution.</returns>
|
public IEnumerable<double> Samples()
|
{
|
return SamplesUnchecked(_random, _shape, _scale);
|
}
|
|
static double SampleUnchecked(System.Random rnd, double shape, double scale)
|
{
|
var x = rnd.NextDouble();
|
return scale*Math.Pow(-Math.Log(x), 1.0/shape);
|
}
|
|
static IEnumerable<double> SamplesUnchecked(System.Random rnd, double shape, double scale)
|
{
|
var exponent = 1.0/shape;
|
return rnd.NextDoubleSequence().Select(x => scale*Math.Pow(-Math.Log(x), exponent));
|
}
|
|
static void SamplesUnchecked(System.Random rnd, double[] values, double shape, double scale)
|
{
|
var exponent = 1.0/shape;
|
rnd.NextDoubles(values);
|
CommonParallel.For(0, values.Length, 4096, (a, b) =>
|
{
|
for (int i = a; i < b; i++)
|
{
|
values[i] = scale*Math.Pow(-Math.Log(values[i]), exponent);
|
}
|
});
|
}
|
|
/// <summary>
|
/// Computes the probability density of the distribution (PDF) at x, i.e. ∂P(X ≤ x)/∂x.
|
/// </summary>
|
/// <param name="shape">The shape (k) of the Weibull distribution. Range: k > 0.</param>
|
/// <param name="scale">The scale (λ) of the Weibull distribution. Range: λ > 0.</param>
|
/// <param name="x">The location at which to compute the density.</param>
|
/// <returns>the density at <paramref name="x"/>.</returns>
|
/// <seealso cref="Density"/>
|
public static double PDF(double shape, double scale, double x)
|
{
|
if (shape <= 0.0 || scale <= 0.0)
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
|
if (x >= 0.0)
|
{
|
if (x == 0.0 && shape == 1.0)
|
{
|
return shape/scale;
|
}
|
|
return shape
|
*Math.Pow(x/scale, shape - 1.0)
|
*Math.Exp(-Math.Pow(x, shape)*Math.Pow(scale, -shape))
|
/scale;
|
}
|
|
return 0.0;
|
}
|
|
/// <summary>
|
/// Computes the log probability density of the distribution (lnPDF) at x, i.e. ln(∂P(X ≤ x)/∂x).
|
/// </summary>
|
/// <param name="shape">The shape (k) of the Weibull distribution. Range: k > 0.</param>
|
/// <param name="scale">The scale (λ) of the Weibull distribution. Range: λ > 0.</param>
|
/// <param name="x">The location at which to compute the density.</param>
|
/// <returns>the log density at <paramref name="x"/>.</returns>
|
/// <seealso cref="DensityLn"/>
|
public static double PDFLn(double shape, double scale, double x)
|
{
|
if (shape <= 0.0 || scale <= 0.0)
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
|
if (x >= 0.0)
|
{
|
if (x == 0.0 && shape == 1.0)
|
{
|
return Math.Log(shape) - Math.Log(scale);
|
}
|
|
return Math.Log(shape)
|
+ ((shape - 1.0)*Math.Log(x/scale))
|
- (Math.Pow(x, shape)*Math.Pow(scale, -shape))
|
- Math.Log(scale);
|
}
|
|
return double.NegativeInfinity;
|
}
|
|
/// <summary>
|
/// Computes the cumulative distribution (CDF) of the distribution at x, i.e. P(X ≤ x).
|
/// </summary>
|
/// <param name="x">The location at which to compute the cumulative distribution function.</param>
|
/// <param name="shape">The shape (k) of the Weibull distribution. Range: k > 0.</param>
|
/// <param name="scale">The scale (λ) of the Weibull distribution. Range: λ > 0.</param>
|
/// <returns>the cumulative distribution at location <paramref name="x"/>.</returns>
|
/// <seealso cref="CumulativeDistribution"/>
|
public static double CDF(double shape, double scale, double x)
|
{
|
if (shape <= 0.0 || scale <= 0.0)
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
|
if (x < 0.0)
|
{
|
return 0.0;
|
}
|
|
return -SpecialFunctions.ExponentialMinusOne(-Math.Pow(x, shape)*Math.Pow(scale, -shape));
|
}
|
|
/// <summary>
|
/// Implemented according to: Parameter estimation of the Weibull probability distribution, 1994, Hongzhu Qiao, Chris P. Tsokos
|
/// </summary>
|
/// <param name="samples"></param>
|
/// <param name="randomSource"></param>
|
/// <returns>Returns a Weibull distribution.</returns>
|
public static Weibull Estimate(IEnumerable<double> samples, System.Random randomSource = null)
|
{
|
var samp = samples as double[] ?? samples.ToArray();
|
double n = samp.Length, s1 = 0, s2 = 0, s3 = 0, previousC = Int32.MinValue, QofC = 0;
|
|
if (n <= 1) throw new Exception("Observations not sufficient");
|
|
// Start values
|
double c = 10; double b = 0;
|
|
while (Math.Abs(c - previousC) >= 0.0001)
|
{
|
s1 = s2 = s3 = 0;
|
foreach (double x in samp)
|
{
|
if (x > 0)
|
{
|
s1 += Math.Log(x);
|
s2 += Math.Pow(x, c);
|
s3 += Math.Pow(x, c) * Math.Log(x);
|
}
|
}
|
QofC = n * s2 / (n * s3 - s1 * s2);
|
|
previousC = c;
|
c = (c + QofC) / 2;
|
}
|
|
foreach (double x in samp)
|
{
|
if (x > 0)
|
{
|
b += Math.Pow(x, c);
|
}
|
}
|
|
b = Math.Pow(b / n, 1 / c);
|
|
return new Weibull(c, b, randomSource);
|
}
|
|
/// <summary>
|
/// Generates a sample from the Weibull distribution.
|
/// </summary>
|
/// <param name="rnd">The random number generator to use.</param>
|
/// <param name="shape">The shape (k) of the Weibull distribution. Range: k > 0.</param>
|
/// <param name="scale">The scale (λ) of the Weibull distribution. Range: λ > 0.</param>
|
/// <returns>a sample from the distribution.</returns>
|
public static double Sample(System.Random rnd, double shape, double scale)
|
{
|
if (shape <= 0.0 || scale <= 0.0)
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
|
return SampleUnchecked(rnd, shape, scale);
|
}
|
|
/// <summary>
|
/// Generates a sequence of samples from the Weibull distribution.
|
/// </summary>
|
/// <param name="rnd">The random number generator to use.</param>
|
/// <param name="shape">The shape (k) of the Weibull distribution. Range: k > 0.</param>
|
/// <param name="scale">The scale (λ) of the Weibull distribution. Range: λ > 0.</param>
|
/// <returns>a sequence of samples from the distribution.</returns>
|
public static IEnumerable<double> Samples(System.Random rnd, double shape, double scale)
|
{
|
if (shape <= 0.0 || scale <= 0.0)
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
|
return SamplesUnchecked(rnd, shape, scale);
|
}
|
|
/// <summary>
|
/// Fills an array with samples generated from the distribution.
|
/// </summary>
|
/// <param name="rnd">The random number generator to use.</param>
|
/// <param name="values">The array to fill with the samples.</param>
|
/// <param name="shape">The shape (k) of the Weibull distribution. Range: k > 0.</param>
|
/// <param name="scale">The scale (λ) of the Weibull distribution. Range: λ > 0.</param>
|
/// <returns>a sequence of samples from the distribution.</returns>
|
public static void Samples(System.Random rnd, double[] values, double shape, double scale)
|
{
|
if (shape <= 0.0 || scale <= 0.0)
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
|
SamplesUnchecked(rnd, values, shape, scale);
|
}
|
|
/// <summary>
|
/// Generates a sample from the Weibull distribution.
|
/// </summary>
|
/// <param name="shape">The shape (k) of the Weibull distribution. Range: k > 0.</param>
|
/// <param name="scale">The scale (λ) of the Weibull distribution. Range: λ > 0.</param>
|
/// <returns>a sample from the distribution.</returns>
|
public static double Sample(double shape, double scale)
|
{
|
if (shape <= 0.0 || scale <= 0.0)
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
|
return SampleUnchecked(SystemRandomSource.Default, shape, scale);
|
}
|
|
/// <summary>
|
/// Generates a sequence of samples from the Weibull distribution.
|
/// </summary>
|
/// <param name="shape">The shape (k) of the Weibull distribution. Range: k > 0.</param>
|
/// <param name="scale">The scale (λ) of the Weibull distribution. Range: λ > 0.</param>
|
/// <returns>a sequence of samples from the distribution.</returns>
|
public static IEnumerable<double> Samples(double shape, double scale)
|
{
|
if (shape <= 0.0 || scale <= 0.0)
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
|
return SamplesUnchecked(SystemRandomSource.Default, shape, scale);
|
}
|
|
/// <summary>
|
/// Fills an array with samples generated from the distribution.
|
/// </summary>
|
/// <param name="values">The array to fill with the samples.</param>
|
/// <param name="shape">The shape (k) of the Weibull distribution. Range: k > 0.</param>
|
/// <param name="scale">The scale (λ) of the Weibull distribution. Range: λ > 0.</param>
|
/// <returns>a sequence of samples from the distribution.</returns>
|
public static void Samples(double[] values, double shape, double scale)
|
{
|
if (shape <= 0.0 || scale <= 0.0)
|
{
|
throw new ArgumentException("Invalid parametrization for the distribution.");
|
}
|
|
SamplesUnchecked(SystemRandomSource.Default, values, shape, scale);
|
}
|
}
|
}
|