// <copyright file="NumericalHessian.cs" company="Math.NET">
|
// Math.NET Numerics, part of the Math.NET Project
|
// http://numerics.mathdotnet.com
|
// http://github.com/mathnet/mathnet-numerics
|
//
|
// Copyright (c) 2009-2015 Math.NET
|
//
|
// Permission is hereby granted, free of charge, to any person
|
// obtaining a copy of this software and associated documentation
|
// files (the "Software"), to deal in the Software without
|
// restriction, including without limitation the rights to use,
|
// copy, modify, merge, publish, distribute, sublicense, and/or sell
|
// copies of the Software, and to permit persons to whom the
|
// Software is furnished to do so, subject to the following
|
// conditions:
|
//
|
// The above copyright notice and this permission notice shall be
|
// included in all copies or substantial portions of the Software.
|
//
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
|
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
|
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
// OTHER DEALINGS IN THE SOFTWARE.
|
// </copyright>
|
|
using System;
|
|
namespace IStation.Numerics.Differentiation
|
{
|
/// <summary>
|
/// Class for evaluating the Hessian of a smooth continuously differentiable function using finite differences.
|
/// By default, a central 3-point method is used.
|
/// </summary>
|
public class NumericalHessian
|
{
|
/// <summary>
|
/// Number of function evaluations.
|
/// </summary>
|
public int FunctionEvaluations => _df.Evaluations;
|
|
private readonly NumericalDerivative _df;
|
|
/// <summary>
|
/// Creates a numerical Hessian object with a three point central difference method.
|
/// </summary>
|
public NumericalHessian() : this(3, 1) { }
|
|
/// <summary>
|
/// Creates a numerical Hessian with a specified differentiation scheme.
|
/// </summary>
|
/// <param name="points">Number of points for Hessian evaluation.</param>
|
/// <param name="center">Center point for differentiation.</param>
|
public NumericalHessian(int points, int center)
|
{
|
_df = new NumericalDerivative(points, center);
|
}
|
|
/// <summary>
|
/// Evaluates the Hessian of the scalar univariate function f at points x.
|
/// </summary>
|
/// <param name="f">Scalar univariate function handle.</param>
|
/// <param name="x">Point at which to evaluate Hessian.</param>
|
/// <returns>Hessian tensor.</returns>
|
public double[] Evaluate(Func<double, double> f, double x)
|
{
|
return new[] { _df.EvaluateDerivative(f, x, 2) };
|
}
|
|
/// <summary>
|
/// Evaluates the Hessian of a multivariate function f at points x.
|
/// </summary>
|
/// <remarks>
|
/// This method of computing the Hessian is only valid for Lipschitz continuous functions.
|
/// The function mirrors the Hessian along the diagonal since d2f/dxdy = d2f/dydx for continuously differentiable functions.
|
/// </remarks>
|
/// <param name="f">Multivariate function handle.></param>
|
/// <param name="x">Points at which to evaluate Hessian.></param>
|
/// <returns>Hessian tensor.</returns>
|
public double[,] Evaluate(Func<double[], double> f, double[] x)
|
{
|
var hessian = new double[x.Length, x.Length];
|
|
// Compute diagonal elements
|
for (var row = 0; row < x.Length; row++)
|
{
|
hessian[row, row] = _df.EvaluatePartialDerivative(f, x, row, 2);
|
}
|
|
// Compute non-diagonal elements
|
for (var row = 0; row < x.Length; row++)
|
{
|
for (var col = 0; col < row; col++)
|
{
|
var mixedPartial = _df.EvaluateMixedPartialDerivative(f, x, new[] { row, col }, 2);
|
|
hessian[row, col] = mixedPartial;
|
hessian[col, row] = mixedPartial;
|
}
|
}
|
return hessian;
|
}
|
|
/// <summary>
|
/// Resets the function evaluation counter for the Hessian.
|
/// </summary>
|
public void ResetFunctionEvaluations()
|
{
|
_df.ResetEvaluations();
|
}
|
}
|
}
|