// <copyright file="SparseVector.cs" company="Math.NET">
|
// Math.NET Numerics, part of the Math.NET Project
|
// http://numerics.mathdotnet.com
|
// http://github.com/mathnet/mathnet-numerics
|
//
|
// Copyright (c) 2009-2015 Math.NET
|
//
|
// Permission is hereby granted, free of charge, to any person
|
// obtaining a copy of this software and associated documentation
|
// files (the "Software"), to deal in the Software without
|
// restriction, including without limitation the rights to use,
|
// copy, modify, merge, publish, distribute, sublicense, and/or sell
|
// copies of the Software, and to permit persons to whom the
|
// Software is furnished to do so, subject to the following
|
// conditions:
|
//
|
// The above copyright notice and this permission notice shall be
|
// included in all copies or substantial portions of the Software.
|
//
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
|
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
|
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
// OTHER DEALINGS IN THE SOFTWARE.
|
// </copyright>
|
|
using System;
|
using System.Collections.Generic;
|
using System.Diagnostics;
|
using IStation.Numerics.LinearAlgebra.Storage;
|
using IStation.Numerics.Providers.LinearAlgebra;
|
using IStation.Numerics.Threading;
|
|
namespace IStation.Numerics.LinearAlgebra.Complex
|
{
|
using Complex = System.Numerics.Complex;
|
|
/// <summary>
|
/// A vector with sparse storage, intended for very large vectors where most of the cells are zero.
|
/// </summary>
|
/// <remarks>The sparse vector is not thread safe.</remarks>
|
[Serializable]
|
[DebuggerDisplay("SparseVector {Count}-Complex {NonZerosCount}-NonZero")]
|
public class SparseVector : Vector
|
{
|
readonly SparseVectorStorage<Complex> _storage;
|
|
/// <summary>
|
/// Gets the number of non zero elements in the vector.
|
/// </summary>
|
/// <value>The number of non zero elements.</value>
|
public int NonZerosCount => _storage.ValueCount;
|
|
/// <summary>
|
/// Create a new sparse vector straight from an initialized vector storage instance.
|
/// The storage is used directly without copying.
|
/// Intended for advanced scenarios where you're working directly with
|
/// storage for performance or interop reasons.
|
/// </summary>
|
public SparseVector(SparseVectorStorage<Complex> storage)
|
: base(storage)
|
{
|
_storage = storage;
|
}
|
|
/// <summary>
|
/// Create a new sparse vector with the given length.
|
/// All cells of the vector will be initialized to zero.
|
/// </summary>
|
/// <exception cref="ArgumentException">If length is less than one.</exception>
|
public SparseVector(int length)
|
: this(new SparseVectorStorage<Complex>(length))
|
{
|
}
|
|
/// <summary>
|
/// Create a new sparse vector as a copy of the given other vector.
|
/// This new vector will be independent from the other vector.
|
/// A new memory block will be allocated for storing the vector.
|
/// </summary>
|
public static SparseVector OfVector(Vector<Complex> vector)
|
{
|
return new SparseVector(SparseVectorStorage<Complex>.OfVector(vector.Storage));
|
}
|
|
/// <summary>
|
/// Create a new sparse vector as a copy of the given enumerable.
|
/// This new vector will be independent from the enumerable.
|
/// A new memory block will be allocated for storing the vector.
|
/// </summary>
|
public static SparseVector OfEnumerable(IEnumerable<Complex> enumerable)
|
{
|
return new SparseVector(SparseVectorStorage<Complex>.OfEnumerable(enumerable));
|
}
|
|
/// <summary>
|
/// Create a new sparse vector as a copy of the given indexed enumerable.
|
/// Keys must be provided at most once, zero is assumed if a key is omitted.
|
/// This new vector will be independent from the enumerable.
|
/// A new memory block will be allocated for storing the vector.
|
/// </summary>
|
public static SparseVector OfIndexedEnumerable(int length, IEnumerable<Tuple<int, Complex>> enumerable)
|
{
|
return new SparseVector(SparseVectorStorage<Complex>.OfIndexedEnumerable(length, enumerable));
|
}
|
|
/// <summary>
|
/// Create a new sparse vector and initialize each value using the provided value.
|
/// </summary>
|
public static SparseVector Create(int length, Complex value)
|
{
|
return new SparseVector(SparseVectorStorage<Complex>.OfValue(length, value));
|
}
|
|
/// <summary>
|
/// Create a new sparse vector and initialize each value using the provided init function.
|
/// </summary>
|
public static SparseVector Create(int length, Func<int, Complex> init)
|
{
|
return new SparseVector(SparseVectorStorage<Complex>.OfInit(length, init));
|
}
|
|
/// <summary>
|
/// Adds a scalar to each element of the vector and stores the result in the result vector.
|
/// Warning, the new 'sparse vector' with a non-zero scalar added to it will be a 100% filled
|
/// sparse vector and very inefficient. Would be better to work with a dense vector instead.
|
/// </summary>
|
/// <param name="scalar">
|
/// The scalar to add.
|
/// </param>
|
/// <param name="result">
|
/// The vector to store the result of the addition.
|
/// </param>
|
protected override void DoAdd(Complex scalar, Vector<Complex> result)
|
{
|
if (scalar == Complex.Zero)
|
{
|
if (!ReferenceEquals(this, result))
|
{
|
CopyTo(result);
|
}
|
|
return;
|
}
|
|
if (ReferenceEquals(this, result))
|
{
|
//populate a new vector with the scalar
|
var vnonZeroValues = new Complex[Count];
|
var vnonZeroIndices = new int[Count];
|
for (int index = 0; index < Count; index++)
|
{
|
vnonZeroIndices[index] = index;
|
vnonZeroValues[index] = scalar;
|
}
|
|
//populate the non zero values from this
|
var indices = _storage.Indices;
|
var values = _storage.Values;
|
for (int j = 0; j < _storage.ValueCount; j++)
|
{
|
vnonZeroValues[indices[j]] = values[j] + scalar;
|
}
|
|
//assign this vectors array to the new arrays.
|
_storage.Values = vnonZeroValues;
|
_storage.Indices = vnonZeroIndices;
|
_storage.ValueCount = Count;
|
}
|
else
|
{
|
for (var index = 0; index < Count; index++)
|
{
|
result.At(index, At(index) + scalar);
|
}
|
}
|
}
|
|
/// <summary>
|
/// Adds another vector to this vector and stores the result into the result vector.
|
/// </summary>
|
/// <param name="other">
|
/// The vector to add to this one.
|
/// </param>
|
/// <param name="result">
|
/// The vector to store the result of the addition.
|
/// </param>
|
protected override void DoAdd(Vector<Complex> other, Vector<Complex> result)
|
{
|
if (other is SparseVector otherSparse && result is SparseVector resultSparse)
|
{
|
// TODO (ruegg, 2011-10-11): Options to optimize?
|
var otherStorage = otherSparse._storage;
|
if (ReferenceEquals(this, resultSparse))
|
{
|
int i = 0, j = 0;
|
while (j < otherStorage.ValueCount)
|
{
|
if (i >= _storage.ValueCount || _storage.Indices[i] > otherStorage.Indices[j])
|
{
|
var otherValue = otherStorage.Values[j];
|
if (!Complex.Zero.Equals(otherValue))
|
{
|
_storage.InsertAtIndexUnchecked(i++, otherStorage.Indices[j], otherValue);
|
}
|
|
j++;
|
}
|
else if (_storage.Indices[i] == otherStorage.Indices[j])
|
{
|
// TODO: result can be zero, remove?
|
_storage.Values[i++] += otherStorage.Values[j++];
|
}
|
else
|
{
|
i++;
|
}
|
}
|
}
|
else
|
{
|
result.Clear();
|
int i = 0, j = 0, last = -1;
|
while (i < _storage.ValueCount || j < otherStorage.ValueCount)
|
{
|
if (j >= otherStorage.ValueCount || i < _storage.ValueCount && _storage.Indices[i] <= otherStorage.Indices[j])
|
{
|
var next = _storage.Indices[i];
|
if (next != last)
|
{
|
last = next;
|
result.At(next, _storage.Values[i] + otherSparse.At(next));
|
}
|
|
i++;
|
}
|
else
|
{
|
var next = otherStorage.Indices[j];
|
if (next != last)
|
{
|
last = next;
|
result.At(next, At(next) + otherStorage.Values[j]);
|
}
|
|
j++;
|
}
|
}
|
}
|
}
|
else
|
{
|
base.DoAdd(other, result);
|
}
|
}
|
|
/// <summary>
|
/// Subtracts a scalar from each element of the vector and stores the result in the result vector.
|
/// </summary>
|
/// <param name="scalar">
|
/// The scalar to subtract.
|
/// </param>
|
/// <param name="result">
|
/// The vector to store the result of the subtraction.
|
/// </param>
|
protected override void DoSubtract(Complex scalar, Vector<Complex> result)
|
{
|
DoAdd(-scalar, result);
|
}
|
|
/// <summary>
|
/// Subtracts another vector to this vector and stores the result into the result vector.
|
/// </summary>
|
/// <param name="other">
|
/// The vector to subtract from this one.
|
/// </param>
|
/// <param name="result">
|
/// The vector to store the result of the subtraction.
|
/// </param>
|
protected override void DoSubtract(Vector<Complex> other, Vector<Complex> result)
|
{
|
if (ReferenceEquals(this, other))
|
{
|
result.Clear();
|
return;
|
}
|
|
if (other is SparseVector otherSparse && result is SparseVector resultSparse)
|
{
|
// TODO (ruegg, 2011-10-11): Options to optimize?
|
var otherStorage = otherSparse._storage;
|
if (ReferenceEquals(this, resultSparse))
|
{
|
int i = 0, j = 0;
|
while (j < otherStorage.ValueCount)
|
{
|
if (i >= _storage.ValueCount || _storage.Indices[i] > otherStorage.Indices[j])
|
{
|
var otherValue = otherStorage.Values[j];
|
if (!Complex.Zero.Equals(otherValue))
|
{
|
_storage.InsertAtIndexUnchecked(i++, otherStorage.Indices[j], -otherValue);
|
}
|
|
j++;
|
}
|
else if (_storage.Indices[i] == otherStorage.Indices[j])
|
{
|
// TODO: result can be zero, remove?
|
_storage.Values[i++] -= otherStorage.Values[j++];
|
}
|
else
|
{
|
i++;
|
}
|
}
|
}
|
else
|
{
|
result.Clear();
|
int i = 0, j = 0, last = -1;
|
while (i < _storage.ValueCount || j < otherStorage.ValueCount)
|
{
|
if (j >= otherStorage.ValueCount || i < _storage.ValueCount && _storage.Indices[i] <= otherStorage.Indices[j])
|
{
|
var next = _storage.Indices[i];
|
if (next != last)
|
{
|
last = next;
|
result.At(next, _storage.Values[i] - otherSparse.At(next));
|
}
|
|
i++;
|
}
|
else
|
{
|
var next = otherStorage.Indices[j];
|
if (next != last)
|
{
|
last = next;
|
result.At(next, At(next) - otherStorage.Values[j]);
|
}
|
|
j++;
|
}
|
}
|
}
|
}
|
else
|
{
|
base.DoSubtract(other, result);
|
}
|
}
|
|
/// <summary>
|
/// Negates vector and saves result to <paramref name="result"/>
|
/// </summary>
|
/// <param name="result">Target vector</param>
|
protected override void DoNegate(Vector<Complex> result)
|
{
|
if (result is SparseVector sparseResult)
|
{
|
if (!ReferenceEquals(this, result))
|
{
|
sparseResult._storage.ValueCount = _storage.ValueCount;
|
sparseResult._storage.Indices = new int[_storage.ValueCount];
|
Buffer.BlockCopy(_storage.Indices, 0, sparseResult._storage.Indices, 0, _storage.ValueCount * Constants.SizeOfInt);
|
sparseResult._storage.Values = new Complex[_storage.ValueCount];
|
Array.Copy(_storage.Values, 0, sparseResult._storage.Values, 0, _storage.ValueCount);
|
}
|
|
LinearAlgebraControl.Provider.ScaleArray(-Complex.One, sparseResult._storage.Values, sparseResult._storage.Values);
|
}
|
else
|
{
|
result.Clear();
|
for (var index = 0; index < _storage.ValueCount; index++)
|
{
|
result.At(_storage.Indices[index], -_storage.Values[index]);
|
}
|
}
|
}
|
|
/// <summary>
|
/// Conjugates vector and save result to <paramref name="result"/>
|
/// </summary>
|
/// <param name="result">Target vector</param>
|
protected override void DoConjugate(Vector<Complex> result)
|
{
|
if (result is SparseVector sparseResult)
|
{
|
if (!ReferenceEquals(this, result))
|
{
|
sparseResult._storage.ValueCount = _storage.ValueCount;
|
sparseResult._storage.Indices = new int[_storage.ValueCount];
|
Buffer.BlockCopy(_storage.Indices, 0, sparseResult._storage.Indices, 0, _storage.ValueCount*Constants.SizeOfInt);
|
sparseResult._storage.Values = new Complex[_storage.ValueCount];
|
Array.Copy(_storage.Values, 0, sparseResult._storage.Values, 0, _storage.ValueCount);
|
}
|
|
LinearAlgebraControl.Provider.ConjugateArray(sparseResult._storage.Values, sparseResult._storage.Values);
|
return;
|
}
|
|
result.Clear();
|
for (var index = 0; index < _storage.ValueCount; index++)
|
{
|
result.At(_storage.Indices[index], _storage.Values[index].Conjugate());
|
}
|
}
|
|
/// <summary>
|
/// Multiplies a scalar to each element of the vector and stores the result in the result vector.
|
/// </summary>
|
/// <param name="scalar">
|
/// The scalar to multiply.
|
/// </param>
|
/// <param name="result">
|
/// The vector to store the result of the multiplication.
|
/// </param>
|
protected override void DoMultiply(Complex scalar, Vector<Complex> result)
|
{
|
if (result is SparseVector sparseResult)
|
{
|
if (!ReferenceEquals(this, result))
|
{
|
sparseResult._storage.ValueCount = _storage.ValueCount;
|
sparseResult._storage.Indices = new int[_storage.ValueCount];
|
Buffer.BlockCopy(_storage.Indices, 0, sparseResult._storage.Indices, 0, _storage.ValueCount * Constants.SizeOfInt);
|
sparseResult._storage.Values = new Complex[_storage.ValueCount];
|
Array.Copy(_storage.Values, 0, sparseResult._storage.Values, 0, _storage.ValueCount);
|
}
|
|
LinearAlgebraControl.Provider.ScaleArray(scalar, sparseResult._storage.Values, sparseResult._storage.Values);
|
}
|
else
|
{
|
result.Clear();
|
for (var index = 0; index < _storage.ValueCount; index++)
|
{
|
result.At(_storage.Indices[index], scalar * _storage.Values[index]);
|
}
|
}
|
}
|
|
/// <summary>
|
/// Computes the dot product between this vector and another vector.
|
/// </summary>
|
/// <param name="other">The other vector.</param>
|
/// <returns>The sum of a[i]*b[i] for all i.</returns>
|
protected override Complex DoDotProduct(Vector<Complex> other)
|
{
|
var result = Complex.Zero;
|
if (ReferenceEquals(this, other))
|
{
|
for (var i = 0; i < _storage.ValueCount; i++)
|
{
|
result += _storage.Values[i] * _storage.Values[i];
|
}
|
}
|
else
|
{
|
for (var i = 0; i < _storage.ValueCount; i++)
|
{
|
result += _storage.Values[i] * other.At(_storage.Indices[i]);
|
}
|
}
|
return result;
|
}
|
|
/// <summary>
|
/// Computes the dot product between the conjugate of this vector and another vector.
|
/// </summary>
|
/// <param name="other">The other vector.</param>
|
/// <returns>The sum of conj(a[i])*b[i] for all i.</returns>
|
protected override Complex DoConjugateDotProduct(Vector<Complex> other)
|
{
|
var result = Complex.Zero;
|
if (ReferenceEquals(this, other))
|
{
|
for (var i = 0; i < _storage.ValueCount; i++)
|
{
|
result += _storage.Values[i].Conjugate() * _storage.Values[i];
|
}
|
}
|
else
|
{
|
for (var i = 0; i < _storage.ValueCount; i++)
|
{
|
result += _storage.Values[i].Conjugate() * other.At(_storage.Indices[i]);
|
}
|
}
|
return result;
|
}
|
|
/// <summary>
|
/// Adds two <strong>Vectors</strong> together and returns the results.
|
/// </summary>
|
/// <param name="leftSide">One of the vectors to add.</param>
|
/// <param name="rightSide">The other vector to add.</param>
|
/// <returns>The result of the addition.</returns>
|
/// <exception cref="ArgumentException">If <paramref name="leftSide"/> and <paramref name="rightSide"/> are not the same size.</exception>
|
/// <exception cref="ArgumentNullException">If <paramref name="leftSide"/> or <paramref name="rightSide"/> is <see langword="null" />.</exception>
|
public static SparseVector operator +(SparseVector leftSide, SparseVector rightSide)
|
{
|
if (leftSide == null)
|
{
|
throw new ArgumentNullException(nameof(leftSide));
|
}
|
|
return (SparseVector)leftSide.Add(rightSide);
|
}
|
|
/// <summary>
|
/// Returns a <strong>Vector</strong> containing the negated values of <paramref name="rightSide"/>.
|
/// </summary>
|
/// <param name="rightSide">The vector to get the values from.</param>
|
/// <returns>A vector containing the negated values as <paramref name="rightSide"/>.</returns>
|
/// <exception cref="ArgumentNullException">If <paramref name="rightSide"/> is <see langword="null" />.</exception>
|
public static SparseVector operator -(SparseVector rightSide)
|
{
|
if (rightSide == null)
|
{
|
throw new ArgumentNullException(nameof(rightSide));
|
}
|
|
return (SparseVector)rightSide.Negate();
|
}
|
|
/// <summary>
|
/// Subtracts two <strong>Vectors</strong> and returns the results.
|
/// </summary>
|
/// <param name="leftSide">The vector to subtract from.</param>
|
/// <param name="rightSide">The vector to subtract.</param>
|
/// <returns>The result of the subtraction.</returns>
|
/// <exception cref="ArgumentException">If <paramref name="leftSide"/> and <paramref name="rightSide"/> are not the same size.</exception>
|
/// <exception cref="ArgumentNullException">If <paramref name="leftSide"/> or <paramref name="rightSide"/> is <see langword="null" />.</exception>
|
public static SparseVector operator -(SparseVector leftSide, SparseVector rightSide)
|
{
|
if (leftSide == null)
|
{
|
throw new ArgumentNullException(nameof(leftSide));
|
}
|
|
return (SparseVector)leftSide.Subtract(rightSide);
|
}
|
|
/// <summary>
|
/// Multiplies a vector with a complex.
|
/// </summary>
|
/// <param name="leftSide">The vector to scale.</param>
|
/// <param name="rightSide">The complex value.</param>
|
/// <returns>The result of the multiplication.</returns>
|
/// <exception cref="ArgumentNullException">If <paramref name="leftSide"/> is <see langword="null" />.</exception>
|
public static SparseVector operator *(SparseVector leftSide, Complex rightSide)
|
{
|
if (leftSide == null)
|
{
|
throw new ArgumentNullException(nameof(leftSide));
|
}
|
|
return (SparseVector)leftSide.Multiply(rightSide);
|
}
|
|
/// <summary>
|
/// Multiplies a vector with a complex.
|
/// </summary>
|
/// <param name="leftSide">The complex value.</param>
|
/// <param name="rightSide">The vector to scale.</param>
|
/// <returns>The result of the multiplication.</returns>
|
/// <exception cref="ArgumentNullException">If <paramref name="rightSide"/> is <see langword="null" />.</exception>
|
public static SparseVector operator *(Complex leftSide, SparseVector rightSide)
|
{
|
if (rightSide == null)
|
{
|
throw new ArgumentNullException(nameof(rightSide));
|
}
|
|
return (SparseVector)rightSide.Multiply(leftSide);
|
}
|
|
/// <summary>
|
/// Computes the dot product between two <strong>Vectors</strong>.
|
/// </summary>
|
/// <param name="leftSide">The left row vector.</param>
|
/// <param name="rightSide">The right column vector.</param>
|
/// <returns>The dot product between the two vectors.</returns>
|
/// <exception cref="ArgumentException">If <paramref name="leftSide"/> and <paramref name="rightSide"/> are not the same size.</exception>
|
/// <exception cref="ArgumentNullException">If <paramref name="leftSide"/> or <paramref name="rightSide"/> is <see langword="null" />.</exception>
|
public static Complex operator *(SparseVector leftSide, SparseVector rightSide)
|
{
|
if (leftSide == null)
|
{
|
throw new ArgumentNullException(nameof(leftSide));
|
}
|
|
return leftSide.DotProduct(rightSide);
|
}
|
|
/// <summary>
|
/// Divides a vector with a complex.
|
/// </summary>
|
/// <param name="leftSide">The vector to divide.</param>
|
/// <param name="rightSide">The complex value.</param>
|
/// <returns>The result of the division.</returns>
|
/// <exception cref="ArgumentNullException">If <paramref name="leftSide"/> is <see langword="null" />.</exception>
|
public static SparseVector operator /(SparseVector leftSide, Complex rightSide)
|
{
|
if (leftSide == null)
|
{
|
throw new ArgumentNullException(nameof(leftSide));
|
}
|
|
return (SparseVector)leftSide.Divide(rightSide);
|
}
|
|
/// <summary>
|
/// Computes the modulus of each element of the vector of the given divisor.
|
/// </summary>
|
/// <param name="leftSide">The vector whose elements we want to compute the modulus of.</param>
|
/// <param name="rightSide">The divisor to use,</param>
|
/// <returns>The result of the calculation</returns>
|
/// <exception cref="ArgumentNullException">If <paramref name="leftSide"/> is <see langword="null" />.</exception>
|
public static SparseVector operator %(SparseVector leftSide, Complex rightSide)
|
{
|
if (leftSide == null)
|
{
|
throw new ArgumentNullException(nameof(leftSide));
|
}
|
|
return (SparseVector)leftSide.Modulus(rightSide);
|
}
|
|
/// <summary>
|
/// Returns the index of the absolute minimum element.
|
/// </summary>
|
/// <returns>The index of absolute minimum element.</returns>
|
public override int AbsoluteMinimumIndex()
|
{
|
if (_storage.ValueCount == 0)
|
{
|
// No non-zero elements. Return 0
|
return 0;
|
}
|
|
var index = 0;
|
var min = _storage.Values[index].Magnitude;
|
for (var i = 1; i < _storage.ValueCount; i++)
|
{
|
var test = _storage.Values[i].Magnitude;
|
if (test < min)
|
{
|
index = i;
|
min = test;
|
}
|
}
|
|
return _storage.Indices[index];
|
}
|
|
/// <summary>
|
/// Returns the index of the absolute maximum element.
|
/// </summary>
|
/// <returns>The index of absolute maximum element.</returns>
|
public override int AbsoluteMaximumIndex()
|
{
|
if (_storage.ValueCount == 0)
|
{
|
// No non-zero elements. Return 0
|
return 0;
|
}
|
|
var index = 0;
|
var max = _storage.Values[index].Magnitude;
|
for (var i = 1; i < _storage.ValueCount; i++)
|
{
|
var test = _storage.Values[i].Magnitude;
|
if (test > max)
|
{
|
index = i;
|
max = test;
|
}
|
}
|
|
return _storage.Indices[index];
|
}
|
|
/// <summary>
|
/// Computes the sum of the vector's elements.
|
/// </summary>
|
/// <returns>The sum of the vector's elements.</returns>
|
public override Complex Sum()
|
{
|
var result = Complex.Zero;
|
for (var i = 0; i < _storage.ValueCount; i++)
|
{
|
result += _storage.Values[i];
|
}
|
return result;
|
}
|
|
/// <summary>
|
/// Calculates the L1 norm of the vector, also known as Manhattan norm.
|
/// </summary>
|
/// <returns>The sum of the absolute values.</returns>
|
public override double L1Norm()
|
{
|
double result = 0d;
|
for (var i = 0; i < _storage.ValueCount; i++)
|
{
|
result += _storage.Values[i].Magnitude;
|
}
|
return result;
|
}
|
|
/// <summary>
|
/// Calculates the infinity norm of the vector.
|
/// </summary>
|
/// <returns>The maximum absolute value.</returns>
|
public override double InfinityNorm()
|
{
|
return CommonParallel.Aggregate(0, _storage.ValueCount, i => _storage.Values[i].Magnitude, Math.Max, 0d);
|
}
|
|
/// <summary>
|
/// Computes the p-Norm.
|
/// </summary>
|
/// <param name="p">The p value.</param>
|
/// <returns>Scalar <c>ret = ( ∑|this[i]|^p )^(1/p)</c></returns>
|
public override double Norm(double p)
|
{
|
if (p < 0d) throw new ArgumentOutOfRangeException(nameof(p));
|
|
if (_storage.ValueCount == 0)
|
{
|
return 0d;
|
}
|
|
if (p == 1d) return L1Norm();
|
if (p == 2d) return L2Norm();
|
if (double.IsPositiveInfinity(p)) return InfinityNorm();
|
|
double sum = 0d;
|
for (var index = 0; index < _storage.ValueCount; index++)
|
{
|
sum += Math.Pow(_storage.Values[index].Magnitude, p);
|
}
|
return Math.Pow(sum, 1.0 / p);
|
}
|
|
/// <summary>
|
/// Pointwise multiplies this vector with another vector and stores the result into the result vector.
|
/// </summary>
|
/// <param name="other">The vector to pointwise multiply with this one.</param>
|
/// <param name="result">The vector to store the result of the pointwise multiplication.</param>
|
protected override void DoPointwiseMultiply(Vector<Complex> other, Vector<Complex> result)
|
{
|
if (ReferenceEquals(this, other) && ReferenceEquals(this, result))
|
{
|
for (var i = 0; i < _storage.ValueCount; i++)
|
{
|
_storage.Values[i] *= _storage.Values[i];
|
}
|
}
|
else
|
{
|
base.DoPointwiseMultiply(other, result);
|
}
|
}
|
|
#region Parse Functions
|
|
/// <summary>
|
/// Creates a double sparse vector based on a string. The string can be in the following formats (without the
|
/// quotes): 'n', 'n;n;..', '(n;n;..)', '[n;n;...]', where n is a Complex.
|
/// </summary>
|
/// <returns>
|
/// A double sparse vector containing the values specified by the given string.
|
/// </returns>
|
/// <param name="value">
|
/// the string to parse.
|
/// </param>
|
/// <param name="formatProvider">
|
/// An <see cref="IFormatProvider"/> that supplies culture-specific formatting information.
|
/// </param>
|
public static SparseVector Parse(string value, IFormatProvider formatProvider = null)
|
{
|
if (value == null)
|
{
|
throw new ArgumentNullException(nameof(value));
|
}
|
|
value = value.Trim();
|
if (value.Length == 0)
|
{
|
throw new FormatException();
|
}
|
|
// strip out parens
|
if (value.StartsWith("(", StringComparison.Ordinal))
|
{
|
if (!value.EndsWith(")", StringComparison.Ordinal))
|
{
|
throw new FormatException();
|
}
|
|
value = value.Substring(1, value.Length - 2).Trim();
|
}
|
|
if (value.StartsWith("[", StringComparison.Ordinal))
|
{
|
if (!value.EndsWith("]", StringComparison.Ordinal))
|
{
|
throw new FormatException();
|
}
|
|
value = value.Substring(1, value.Length - 2).Trim();
|
}
|
|
// parsing
|
var strongTokens = value.Split(new[] { formatProvider.GetTextInfo().ListSeparator }, StringSplitOptions.RemoveEmptyEntries);
|
var data = new List<Complex>();
|
foreach (string strongToken in strongTokens)
|
{
|
var weakTokens = strongToken.Split(new[] { " ", "\t" }, StringSplitOptions.RemoveEmptyEntries);
|
string current = string.Empty;
|
for (int i = 0; i < weakTokens.Length; i++)
|
{
|
current += weakTokens[i];
|
if (current.EndsWith("+") || current.EndsWith("-") || current.StartsWith("(") && !current.EndsWith(")"))
|
{
|
continue;
|
}
|
var ahead = i < weakTokens.Length - 1 ? weakTokens[i + 1] : string.Empty;
|
if (ahead.StartsWith("+") || ahead.StartsWith("-"))
|
{
|
continue;
|
}
|
data.Add(current.ToComplex(formatProvider));
|
current = string.Empty;
|
}
|
if (current != string.Empty)
|
{
|
throw new FormatException();
|
}
|
}
|
if (data.Count == 0)
|
{
|
throw new FormatException();
|
}
|
return OfEnumerable(data);
|
}
|
|
/// <summary>
|
/// Converts the string representation of a complex sparse vector to double-precision sparse vector equivalent.
|
/// A return value indicates whether the conversion succeeded or failed.
|
/// </summary>
|
/// <param name="value">
|
/// A string containing a complex vector to convert.
|
/// </param>
|
/// <param name="result">
|
/// The parsed value.
|
/// </param>
|
/// <returns>
|
/// If the conversion succeeds, the result will contain a complex number equivalent to value.
|
/// Otherwise the result will be <c>null</c>.
|
/// </returns>
|
public static bool TryParse(string value, out SparseVector result)
|
{
|
return TryParse(value, null, out result);
|
}
|
|
/// <summary>
|
/// Converts the string representation of a complex sparse vector to double-precision sparse vector equivalent.
|
/// A return value indicates whether the conversion succeeded or failed.
|
/// </summary>
|
/// <param name="value">
|
/// A string containing a complex vector to convert.
|
/// </param>
|
/// <param name="formatProvider">
|
/// An <see cref="IFormatProvider"/> that supplies culture-specific formatting information about value.
|
/// </param>
|
/// <param name="result">
|
/// The parsed value.
|
/// </param>
|
/// <returns>
|
/// If the conversion succeeds, the result will contain a complex number equivalent to value.
|
/// Otherwise the result will be <c>null</c>.
|
/// </returns>
|
public static bool TryParse(string value, IFormatProvider formatProvider, out SparseVector result)
|
{
|
bool ret;
|
try
|
{
|
result = Parse(value, formatProvider);
|
ret = true;
|
}
|
catch (ArgumentNullException)
|
{
|
result = null;
|
ret = false;
|
}
|
catch (FormatException)
|
{
|
result = null;
|
ret = false;
|
}
|
|
return ret;
|
}
|
#endregion
|
|
public override string ToTypeString()
|
{
|
return FormattableString.Invariant($"SparseVector {Count}-Complex {NonZerosCount / (double) Count:P2} Filled");
|
}
|
}
|
}
|