// <copyright file="Ilutp.cs" company="Math.NET">
|
// Math.NET Numerics, part of the Math.NET Project
|
// http://numerics.mathdotnet.com
|
// http://github.com/mathnet/mathnet-numerics
|
//
|
// Copyright (c) 2009-2010 Math.NET
|
//
|
// Permission is hereby granted, free of charge, to any person
|
// obtaining a copy of this software and associated documentation
|
// files (the "Software"), to deal in the Software without
|
// restriction, including without limitation the rights to use,
|
// copy, modify, merge, publish, distribute, sublicense, and/or sell
|
// copies of the Software, and to permit persons to whom the
|
// Software is furnished to do so, subject to the following
|
// conditions:
|
//
|
// The above copyright notice and this permission notice shall be
|
// included in all copies or substantial portions of the Software.
|
//
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
|
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
|
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
// OTHER DEALINGS IN THE SOFTWARE.
|
// </copyright>
|
|
using System;
|
using System.Collections.Generic;
|
using IStation.Numerics.LinearAlgebra.Solvers;
|
|
namespace IStation.Numerics.LinearAlgebra.Single.Solvers
|
{
|
/// <summary>
|
/// This class performs an Incomplete LU factorization with drop tolerance
|
/// and partial pivoting. The drop tolerance indicates which additional entries
|
/// will be dropped from the factorized LU matrices.
|
/// </summary>
|
/// <remarks>
|
/// The ILUTP-Mem algorithm was taken from: <br/>
|
/// ILUTP_Mem: a Space-Efficient Incomplete LU Preconditioner
|
/// <br/>
|
/// Tzu-Yi Chen, Department of Mathematics and Computer Science, <br/>
|
/// Pomona College, Claremont CA 91711, USA <br/>
|
/// Published in: <br/>
|
/// Lecture Notes in Computer Science <br/>
|
/// Volume 3046 / 2004 <br/>
|
/// pp. 20 - 28 <br/>
|
/// Algorithm is described in Section 2, page 22
|
/// </remarks>
|
public sealed class ILUTPPreconditioner : IPreconditioner<float>
|
{
|
/// <summary>
|
/// The default fill level.
|
/// </summary>
|
public const double DefaultFillLevel = 200.0;
|
|
/// <summary>
|
/// The default drop tolerance.
|
/// </summary>
|
public const double DefaultDropTolerance = 0.0001;
|
|
/// <summary>
|
/// The decomposed upper triangular matrix.
|
/// </summary>
|
SparseMatrix _upper;
|
|
/// <summary>
|
/// The decomposed lower triangular matrix.
|
/// </summary>
|
SparseMatrix _lower;
|
|
/// <summary>
|
/// The array containing the pivot values.
|
/// </summary>
|
int[] _pivots;
|
|
/// <summary>
|
/// The fill level.
|
/// </summary>
|
double _fillLevel = DefaultFillLevel;
|
|
/// <summary>
|
/// The drop tolerance.
|
/// </summary>
|
double _dropTolerance = DefaultDropTolerance;
|
|
/// <summary>
|
/// The pivot tolerance.
|
/// </summary>
|
double _pivotTolerance;
|
|
/// <summary>
|
/// Initializes a new instance of the <see cref="ILUTPPreconditioner"/> class with the default settings.
|
/// </summary>
|
public ILUTPPreconditioner()
|
{
|
}
|
|
/// <summary>
|
/// Initializes a new instance of the <see cref="ILUTPPreconditioner"/> class with the specified settings.
|
/// </summary>
|
/// <param name="fillLevel">
|
/// The amount of fill that is allowed in the matrix. The value is a fraction of
|
/// the number of non-zero entries in the original matrix. Values should be positive.
|
/// </param>
|
/// <param name="dropTolerance">
|
/// The absolute drop tolerance which indicates below what absolute value an entry
|
/// will be dropped from the matrix. A drop tolerance of 0.0 means that no values
|
/// will be dropped. Values should always be positive.
|
/// </param>
|
/// <param name="pivotTolerance">
|
/// The pivot tolerance which indicates at what level pivoting will take place. A
|
/// value of 0.0 means that no pivoting will take place.
|
/// </param>
|
public ILUTPPreconditioner(double fillLevel, double dropTolerance, double pivotTolerance)
|
{
|
if (fillLevel < 0)
|
{
|
throw new ArgumentOutOfRangeException(nameof(fillLevel));
|
}
|
|
if (dropTolerance < 0)
|
{
|
throw new ArgumentOutOfRangeException(nameof(dropTolerance));
|
}
|
|
if (pivotTolerance < 0)
|
{
|
throw new ArgumentOutOfRangeException(nameof(pivotTolerance));
|
}
|
|
_fillLevel = fillLevel;
|
_dropTolerance = dropTolerance;
|
_pivotTolerance = pivotTolerance;
|
}
|
|
/// <summary>
|
/// Gets or sets the amount of fill that is allowed in the matrix. The
|
/// value is a fraction of the number of non-zero entries in the original
|
/// matrix. The standard value is 200.
|
/// </summary>
|
/// <remarks>
|
/// <para>
|
/// Values should always be positive and can be higher than 1.0. A value lower
|
/// than 1.0 means that the eventual preconditioner matrix will have fewer
|
/// non-zero entries as the original matrix. A value higher than 1.0 means that
|
/// the eventual preconditioner can have more non-zero values than the original
|
/// matrix.
|
/// </para>
|
/// <para>
|
/// Note that any changes to the <b>FillLevel</b> after creating the preconditioner
|
/// will invalidate the created preconditioner and will require a re-initialization of
|
/// the preconditioner.
|
/// </para>
|
/// </remarks>
|
/// <exception cref="ArgumentOutOfRangeException">Thrown if a negative value is provided.</exception>
|
public double FillLevel
|
{
|
get => _fillLevel;
|
set
|
{
|
if (value < 0)
|
{
|
throw new ArgumentOutOfRangeException(nameof(value));
|
}
|
|
_fillLevel = value;
|
}
|
}
|
|
/// <summary>
|
/// Gets or sets the absolute drop tolerance which indicates below what absolute value
|
/// an entry will be dropped from the matrix. The standard value is 0.0001.
|
/// </summary>
|
/// <remarks>
|
/// <para>
|
/// The values should always be positive and can be larger than 1.0. A low value will
|
/// keep more small numbers in the preconditioner matrix. A high value will remove
|
/// more small numbers from the preconditioner matrix.
|
/// </para>
|
/// <para>
|
/// Note that any changes to the <b>DropTolerance</b> after creating the preconditioner
|
/// will invalidate the created preconditioner and will require a re-initialization of
|
/// the preconditioner.
|
/// </para>
|
/// </remarks>
|
/// <exception cref="ArgumentOutOfRangeException">Thrown if a negative value is provided.</exception>
|
public double DropTolerance
|
{
|
get => _dropTolerance;
|
set
|
{
|
if (value < 0)
|
{
|
throw new ArgumentOutOfRangeException(nameof(value));
|
}
|
|
_dropTolerance = value;
|
}
|
}
|
|
/// <summary>
|
/// Gets or sets the pivot tolerance which indicates at what level pivoting will
|
/// take place. The standard value is 0.0 which means pivoting will never take place.
|
/// </summary>
|
/// <remarks>
|
/// <para>
|
/// The pivot tolerance is used to calculate if pivoting is necessary. Pivoting
|
/// will take place if any of the values in a row is bigger than the
|
/// diagonal value of that row divided by the pivot tolerance, i.e. pivoting
|
/// will take place if <b>row(i,j) > row(i,i) / PivotTolerance</b> for
|
/// any <b>j</b> that is not equal to <b>i</b>.
|
/// </para>
|
/// <para>
|
/// Note that any changes to the <b>PivotTolerance</b> after creating the preconditioner
|
/// will invalidate the created preconditioner and will require a re-initialization of
|
/// the preconditioner.
|
/// </para>
|
/// </remarks>
|
/// <exception cref="ArgumentOutOfRangeException">Thrown if a negative value is provided.</exception>
|
public double PivotTolerance
|
{
|
get => _pivotTolerance;
|
set
|
{
|
if (value < 0)
|
{
|
throw new ArgumentOutOfRangeException(nameof(value));
|
}
|
|
_pivotTolerance = value;
|
}
|
}
|
|
/// <summary>
|
/// Returns the upper triagonal matrix that was created during the LU decomposition.
|
/// </summary>
|
/// <remarks>
|
/// This method is used for debugging purposes only and should normally not be used.
|
/// </remarks>
|
/// <returns>A new matrix containing the upper triagonal elements.</returns>
|
internal Matrix<float> UpperTriangle()
|
{
|
return _upper.Clone();
|
}
|
|
/// <summary>
|
/// Returns the lower triagonal matrix that was created during the LU decomposition.
|
/// </summary>
|
/// <remarks>
|
/// This method is used for debugging purposes only and should normally not be used.
|
/// </remarks>
|
/// <returns>A new matrix containing the lower triagonal elements.</returns>
|
internal Matrix<float> LowerTriangle()
|
{
|
return _lower.Clone();
|
}
|
|
/// <summary>
|
/// Returns the pivot array. This array is not needed for normal use because
|
/// the preconditioner will return the solution vector values in the proper order.
|
/// </summary>
|
/// <remarks>
|
/// This method is used for debugging purposes only and should normally not be used.
|
/// </remarks>
|
/// <returns>The pivot array.</returns>
|
internal int[] Pivots()
|
{
|
var result = new int[_pivots.Length];
|
for (var i = 0; i < _pivots.Length; i++)
|
{
|
result[i] = _pivots[i];
|
}
|
|
return result;
|
}
|
|
/// <summary>
|
/// Initializes the preconditioner and loads the internal data structures.
|
/// </summary>
|
/// <param name="matrix">
|
/// The <see cref="Matrix"/> upon which this preconditioner is based. Note that the
|
/// method takes a general matrix type. However internally the data is stored
|
/// as a sparse matrix. Therefore it is not recommended to pass a dense matrix.
|
/// </param>
|
/// <exception cref="ArgumentNullException"> If <paramref name="matrix"/> is <see langword="null" />.</exception>
|
/// <exception cref="ArgumentException">If <paramref name="matrix"/> is not a square matrix.</exception>
|
public void Initialize(Matrix<float> matrix)
|
{
|
if (matrix == null)
|
{
|
throw new ArgumentNullException(nameof(matrix));
|
}
|
|
if (matrix.RowCount != matrix.ColumnCount)
|
{
|
throw new ArgumentException("Matrix must be square.", nameof(matrix));
|
}
|
|
SparseMatrix sparseMatrix = matrix as SparseMatrix ?? SparseMatrix.OfMatrix(matrix);
|
|
// The creation of the preconditioner follows the following algorithm.
|
// spaceLeft = lfilNnz * nnz(A)
|
// for i = 1, .. , n
|
// {
|
// w = a(i,*)
|
// for j = 1, .. , i - 1
|
// {
|
// if (w(j) != 0)
|
// {
|
// w(j) = w(j) / a(j,j)
|
// if (w(j) < dropTol)
|
// {
|
// w(j) = 0;
|
// }
|
// if (w(j) != 0)
|
// {
|
// w = w - w(j) * U(j,*)
|
// }
|
// }
|
// }
|
//
|
// for j = i, .. ,n
|
// {
|
// if w(j) <= dropTol * ||A(i,*)||
|
// {
|
// w(j) = 0
|
// }
|
// }
|
//
|
// spaceRow = spaceLeft / (n - i + 1) // Determine the space for this row
|
// lfil = spaceRow / 2 // space for this row of L
|
// l(i,j) = w(j) for j = 1, .. , i -1 // only the largest lfil elements
|
//
|
// lfil = spaceRow - nnz(L(i,:)) // space for this row of U
|
// u(i,j) = w(j) for j = i, .. , n // only the largest lfil - 1 elements
|
// w = 0
|
//
|
// if max(U(i,i + 1: n)) > U(i,i) / pivTol then // pivot if necessary
|
// {
|
// pivot by swapping the max and the diagonal entries
|
// Update L, U
|
// Update P
|
// }
|
// spaceLeft = spaceLeft - nnz(L(i,:)) - nnz(U(i,:))
|
// }
|
// Create the lower triangular matrix
|
_lower = new SparseMatrix(sparseMatrix.RowCount);
|
|
// Create the upper triangular matrix and copy the values
|
_upper = new SparseMatrix(sparseMatrix.RowCount);
|
|
// Create the pivot array
|
_pivots = new int[sparseMatrix.RowCount];
|
for (var i = 0; i < _pivots.Length; i++)
|
{
|
_pivots[i] = i;
|
}
|
|
var workVector = new DenseVector(sparseMatrix.RowCount);
|
var rowVector = new DenseVector(sparseMatrix.ColumnCount);
|
var indexSorting = new int[sparseMatrix.RowCount];
|
|
// spaceLeft = lfilNnz * nnz(A)
|
var spaceLeft = (int) _fillLevel*sparseMatrix.NonZerosCount;
|
|
// for i = 1, .. , n
|
for (var i = 0; i < sparseMatrix.RowCount; i++)
|
{
|
// w = a(i,*)
|
sparseMatrix.Row(i, workVector);
|
|
// pivot the row
|
PivotRow(workVector);
|
var vectorNorm = workVector.InfinityNorm();
|
|
// for j = 1, .. , i - 1)
|
for (var j = 0; j < i; j++)
|
{
|
// if (w(j) != 0)
|
// {
|
// w(j) = w(j) / a(j,j)
|
// if (w(j) < dropTol)
|
// {
|
// w(j) = 0;
|
// }
|
// if (w(j) != 0)
|
// {
|
// w = w - w(j) * U(j,*)
|
// }
|
if (workVector[j] != 0.0)
|
{
|
// Calculate the multiplication factors that go into the L matrix
|
workVector[j] = workVector[j]/_upper[j, j];
|
if (Math.Abs(workVector[j]) < _dropTolerance)
|
{
|
workVector[j] = 0.0f;
|
}
|
|
// Calculate the addition factor
|
if (workVector[j] != 0.0)
|
{
|
// vector update all in one go
|
_upper.Row(j, rowVector);
|
|
// zero out columnVector[k] because we don't need that
|
// one anymore for k = 0 to k = j
|
for (var k = 0; k <= j; k++)
|
{
|
rowVector[k] = 0.0f;
|
}
|
|
rowVector.Multiply(workVector[j], rowVector);
|
workVector.Subtract(rowVector, workVector);
|
}
|
}
|
}
|
|
// for j = i, .. ,n
|
for (var j = i; j < sparseMatrix.RowCount; j++)
|
{
|
// if w(j) <= dropTol * ||A(i,*)||
|
// {
|
// w(j) = 0
|
// }
|
if (Math.Abs(workVector[j]) <= _dropTolerance*vectorNorm)
|
{
|
workVector[j] = 0.0f;
|
}
|
}
|
|
// spaceRow = spaceLeft / (n - i + 1) // Determine the space for this row
|
var spaceRow = spaceLeft/(sparseMatrix.RowCount - i + 1);
|
|
// lfil = spaceRow / 2 // space for this row of L
|
var fillLevel = spaceRow/2;
|
FindLargestItems(0, i - 1, indexSorting, workVector);
|
|
// l(i,j) = w(j) for j = 1, .. , i -1 // only the largest lfil elements
|
var lowerNonZeroCount = 0;
|
var count = 0;
|
for (var j = 0; j < i; j++)
|
{
|
if ((count > fillLevel) || (indexSorting[j] == -1))
|
{
|
break;
|
}
|
|
_lower[i, indexSorting[j]] = workVector[indexSorting[j]];
|
count += 1;
|
lowerNonZeroCount += 1;
|
}
|
|
FindLargestItems(i + 1, sparseMatrix.RowCount - 1, indexSorting, workVector);
|
|
// lfil = spaceRow - nnz(L(i,:)) // space for this row of U
|
fillLevel = spaceRow - lowerNonZeroCount;
|
|
// u(i,j) = w(j) for j = i + 1, .. , n // only the largest lfil - 1 elements
|
var upperNonZeroCount = 0;
|
count = 0;
|
for (var j = 0; j < sparseMatrix.RowCount - i; j++)
|
{
|
if ((count > fillLevel - 1) || (indexSorting[j] == -1))
|
{
|
break;
|
}
|
|
_upper[i, indexSorting[j]] = workVector[indexSorting[j]];
|
count += 1;
|
upperNonZeroCount += 1;
|
}
|
|
// Simply copy the diagonal element. Next step is to see if we pivot
|
_upper[i, i] = workVector[i];
|
|
// if max(U(i,i + 1: n)) > U(i,i) / pivTol then // pivot if necessary
|
// {
|
// pivot by swapping the max and the diagonal entries
|
// Update L, U
|
// Update P
|
// }
|
|
// Check if we really need to pivot. If (i+1) >=(mCoefficientMatrix.Rows -1) then
|
// we are working on the last row. That means that there is only one number
|
// And pivoting is useless. Also the indexSorting array will only contain
|
// -1 values.
|
if ((i + 1) < (sparseMatrix.RowCount - 1))
|
{
|
if (Math.Abs(workVector[i]) < _pivotTolerance*Math.Abs(workVector[indexSorting[0]]))
|
{
|
// swap columns of u (which holds the values of A in the
|
// sections that haven't been partitioned yet.
|
SwapColumns(_upper, i, indexSorting[0]);
|
|
// Update P
|
var temp = _pivots[i];
|
_pivots[i] = _pivots[indexSorting[0]];
|
_pivots[indexSorting[0]] = temp;
|
}
|
}
|
|
// spaceLeft = spaceLeft - nnz(L(i,:)) - nnz(U(i,:))
|
spaceLeft -= lowerNonZeroCount + upperNonZeroCount;
|
}
|
|
for (var i = 0; i < _lower.RowCount; i++)
|
{
|
_lower[i, i] = 1.0f;
|
}
|
}
|
|
/// <summary>
|
/// Pivot elements in the <paramref name="row"/> according to internal pivot array
|
/// </summary>
|
/// <param name="row">Row <see cref="Vector"/> to pivot in</param>
|
void PivotRow(Vector<float> row)
|
{
|
var knownPivots = new Dictionary<int, int>();
|
|
// pivot the row
|
for (var i = 0; i < row.Count; i++)
|
{
|
if ((_pivots[i] != i) && (!PivotMapFound(knownPivots, i)))
|
{
|
// store the pivots in the hashtable
|
knownPivots.Add(_pivots[i], i);
|
|
var t = row[i];
|
row[i] = row[_pivots[i]];
|
row[_pivots[i]] = t;
|
}
|
}
|
}
|
|
/// <summary>
|
/// Was pivoting already performed
|
/// </summary>
|
/// <param name="knownPivots">Pivots already done</param>
|
/// <param name="currentItem">Current item to pivot</param>
|
/// <returns><c>true</c> if performed, otherwise <c>false</c></returns>
|
bool PivotMapFound(Dictionary<int, int> knownPivots, int currentItem)
|
{
|
if (knownPivots.ContainsKey(_pivots[currentItem]))
|
{
|
if (knownPivots[_pivots[currentItem]].Equals(currentItem))
|
{
|
return true;
|
}
|
}
|
|
if (knownPivots.ContainsKey(currentItem))
|
{
|
if (knownPivots[currentItem].Equals(_pivots[currentItem]))
|
{
|
return true;
|
}
|
}
|
|
return false;
|
}
|
|
/// <summary>
|
/// Swap columns in the <see cref="Matrix"/>
|
/// </summary>
|
/// <param name="matrix">Source <see cref="Matrix"/>.</param>
|
/// <param name="firstColumn">First column index to swap</param>
|
/// <param name="secondColumn">Second column index to swap</param>
|
static void SwapColumns(Matrix<float> matrix, int firstColumn, int secondColumn)
|
{
|
for (var i = 0; i < matrix.RowCount; i++)
|
{
|
var temp = matrix[i, firstColumn];
|
matrix[i, firstColumn] = matrix[i, secondColumn];
|
matrix[i, secondColumn] = temp;
|
}
|
}
|
|
/// <summary>
|
/// Sort vector descending, not changing vector but placing sorted indices to <paramref name="sortedIndices"/>
|
/// </summary>
|
/// <param name="lowerBound">Start sort form</param>
|
/// <param name="upperBound">Sort till upper bound</param>
|
/// <param name="sortedIndices">Array with sorted vector indices</param>
|
/// <param name="values">Source <see cref="Vector"/></param>
|
static void FindLargestItems(int lowerBound, int upperBound, int[] sortedIndices, Vector<float> values)
|
{
|
// Copy the indices for the values into the array
|
for (var i = 0; i < upperBound + 1 - lowerBound; i++)
|
{
|
sortedIndices[i] = lowerBound + i;
|
}
|
|
for (var i = upperBound + 1 - lowerBound; i < sortedIndices.Length; i++)
|
{
|
sortedIndices[i] = -1;
|
}
|
|
// Sort the first set of items.
|
// Sorting starts at index 0 because the index array
|
// starts at zero
|
// and ends at index upperBound - lowerBound
|
ILUTPElementSorter.SortDoubleIndicesDecreasing(0, upperBound - lowerBound, sortedIndices, values);
|
}
|
|
/// <summary>
|
/// Approximates the solution to the matrix equation <b>Ax = b</b>.
|
/// </summary>
|
/// <param name="rhs">The right hand side vector.</param>
|
/// <param name="lhs">The left hand side vector. Also known as the result vector.</param>
|
public void Approximate(Vector<float> rhs, Vector<float> lhs)
|
{
|
if (_upper == null)
|
{
|
throw new ArgumentException("The requested matrix does not exist.");
|
}
|
|
if ((lhs.Count != rhs.Count) || (lhs.Count != _upper.RowCount))
|
{
|
throw new ArgumentException("All vectors must have the same dimensionality.", nameof(rhs));
|
}
|
|
// Solve equation here
|
// Pivot(vector, result);
|
// Solve L*Y = B(piv,:)
|
var rowValues = new DenseVector(_lower.RowCount);
|
for (var i = 0; i < _lower.RowCount; i++)
|
{
|
_lower.Row(i, rowValues);
|
|
var sum = 0.0f;
|
for (var j = 0; j < i; j++)
|
{
|
sum += rowValues[j]*lhs[j];
|
}
|
|
lhs[i] = rhs[i] - sum;
|
}
|
|
// Solve U*X = Y;
|
for (var i = _upper.RowCount - 1; i > -1; i--)
|
{
|
_upper.Row(i, rowValues);
|
|
var sum = 0.0f;
|
for (var j = _upper.RowCount - 1; j > i; j--)
|
{
|
sum += rowValues[j]*lhs[j];
|
}
|
|
lhs[i] = 1/rowValues[i]*(lhs[i] - sum);
|
}
|
|
// We have a column pivot so we only need to pivot the
|
// end result not the incoming right hand side vector
|
var temp = lhs.Clone();
|
|
Pivot(temp, lhs);
|
}
|
|
/// <summary>
|
/// Pivot elements in <see cref="Vector"/> according to internal pivot array
|
/// </summary>
|
/// <param name="vector">Source <see cref="Vector"/>.</param>
|
/// <param name="result">Result <see cref="Vector"/> after pivoting.</param>
|
void Pivot(Vector<float> vector, Vector<float> result)
|
{
|
for (var i = 0; i < _pivots.Length; i++)
|
{
|
result[i] = vector[_pivots[i]];
|
}
|
}
|
}
|
|
/// <summary>
|
/// An element sort algorithm for the <see cref="ILUTPPreconditioner"/> class.
|
/// </summary>
|
/// <remarks>
|
/// This sort algorithm is used to sort the columns in a sparse matrix based on
|
/// the value of the element on the diagonal of the matrix.
|
/// </remarks>
|
internal static class ILUTPElementSorter
|
{
|
/// <summary>
|
/// Sorts the elements of the <paramref name="values"/> vector in decreasing
|
/// fashion. The vector itself is not affected.
|
/// </summary>
|
/// <param name="lowerBound">The starting index.</param>
|
/// <param name="upperBound">The stopping index.</param>
|
/// <param name="sortedIndices">An array that will contain the sorted indices once the algorithm finishes.</param>
|
/// <param name="values">The <see cref="Vector"/> that contains the values that need to be sorted.</param>
|
public static void SortDoubleIndicesDecreasing(int lowerBound, int upperBound, int[] sortedIndices, Vector<float> values)
|
{
|
// Move all the indices that we're interested in to the beginning of the
|
// array. Ignore the rest of the indices.
|
if (lowerBound > 0)
|
{
|
for (var i = 0; i < (upperBound - lowerBound + 1); i++)
|
{
|
Exchange(sortedIndices, i, i + lowerBound);
|
}
|
|
upperBound -= lowerBound;
|
lowerBound = 0;
|
}
|
|
HeapSortDoublesIndices(lowerBound, upperBound, sortedIndices, values);
|
}
|
|
/// <summary>
|
/// Sorts the elements of the <paramref name="values"/> vector in decreasing
|
/// fashion using heap sort algorithm. The vector itself is not affected.
|
/// </summary>
|
/// <param name="lowerBound">The starting index.</param>
|
/// <param name="upperBound">The stopping index.</param>
|
/// <param name="sortedIndices">An array that will contain the sorted indices once the algorithm finishes.</param>
|
/// <param name="values">The <see cref="Vector"/> that contains the values that need to be sorted.</param>
|
private static void HeapSortDoublesIndices(int lowerBound, int upperBound, int[] sortedIndices, Vector<float> values)
|
{
|
var start = ((upperBound - lowerBound + 1) / 2) - 1 + lowerBound;
|
var end = (upperBound - lowerBound + 1) - 1 + lowerBound;
|
|
BuildDoubleIndexHeap(start, upperBound - lowerBound + 1, sortedIndices, values);
|
|
while (end >= lowerBound)
|
{
|
Exchange(sortedIndices, end, lowerBound);
|
SiftDoubleIndices(sortedIndices, values, lowerBound, end);
|
end -= 1;
|
}
|
}
|
|
/// <summary>
|
/// Build heap for double indices
|
/// </summary>
|
/// <param name="start">Root position</param>
|
/// <param name="count">Length of <paramref name="values"/></param>
|
/// <param name="sortedIndices">Indices of <paramref name="values"/></param>
|
/// <param name="values">Target <see cref="Vector"/></param>
|
private static void BuildDoubleIndexHeap(int start, int count, int[] sortedIndices, Vector<float> values)
|
{
|
while (start >= 0)
|
{
|
SiftDoubleIndices(sortedIndices, values, start, count);
|
start -= 1;
|
}
|
}
|
|
/// <summary>
|
/// Sift double indices
|
/// </summary>
|
/// <param name="sortedIndices">Indices of <paramref name="values"/></param>
|
/// <param name="values">Target <see cref="Vector"/></param>
|
/// <param name="begin">Root position</param>
|
/// <param name="count">Length of <paramref name="values"/></param>
|
private static void SiftDoubleIndices(int[] sortedIndices, Vector<float> values, int begin, int count)
|
{
|
var root = begin;
|
|
while (root * 2 < count)
|
{
|
var child = root * 2;
|
if ((child < count - 1) && (values[sortedIndices[child]] > values[sortedIndices[child + 1]]))
|
{
|
child += 1;
|
}
|
|
if (values[sortedIndices[root]] <= values[sortedIndices[child]])
|
{
|
return;
|
}
|
|
Exchange(sortedIndices, root, child);
|
root = child;
|
}
|
}
|
|
/// <summary>
|
/// Sorts the given integers in a decreasing fashion.
|
/// </summary>
|
/// <param name="values">The values.</param>
|
public static void SortIntegersDecreasing(int[] values)
|
{
|
HeapSortIntegers(values, values.Length);
|
}
|
|
/// <summary>
|
/// Sort the given integers in a decreasing fashion using heapsort algorithm
|
/// </summary>
|
/// <param name="values">Array of values to sort</param>
|
/// <param name="count">Length of <paramref name="values"/></param>
|
private static void HeapSortIntegers(int[] values, int count)
|
{
|
var start = (count / 2) - 1;
|
var end = count - 1;
|
|
BuildHeap(values, start, count);
|
|
while (end >= 0)
|
{
|
Exchange(values, end, 0);
|
Sift(values, 0, end);
|
end -= 1;
|
}
|
}
|
|
/// <summary>
|
/// Build heap
|
/// </summary>
|
/// <param name="values">Target values array</param>
|
/// <param name="start">Root position</param>
|
/// <param name="count">Length of <paramref name="values"/></param>
|
private static void BuildHeap(int[] values, int start, int count)
|
{
|
while (start >= 0)
|
{
|
Sift(values, start, count);
|
start -= 1;
|
}
|
}
|
|
/// <summary>
|
/// Sift values
|
/// </summary>
|
/// <param name="values">Target value array</param>
|
/// <param name="start">Root position</param>
|
/// <param name="count">Length of <paramref name="values"/></param>
|
private static void Sift(int[] values, int start, int count)
|
{
|
var root = start;
|
|
while (root * 2 < count)
|
{
|
var child = root * 2;
|
if ((child < count - 1) && (values[child] > values[child + 1]))
|
{
|
child += 1;
|
}
|
|
if (values[root] > values[child])
|
{
|
Exchange(values, root, child);
|
root = child;
|
}
|
else
|
{
|
return;
|
}
|
}
|
}
|
|
/// <summary>
|
/// Exchange values in array
|
/// </summary>
|
/// <param name="values">Target values array</param>
|
/// <param name="first">First value to exchange</param>
|
/// <param name="second">Second value to exchange</param>
|
private static void Exchange(int[] values, int first, int second)
|
{
|
var t = values[first];
|
values[first] = values[second];
|
values[second] = t;
|
}
|
}
|
}
|