// <copyright file="OdeSolvers.cs" company="Math.NET">
|
// Math.NET Numerics, part of the Math.NET Project
|
// http://numerics.mathdotnet.com
|
// http://github.com/mathnet/mathnet-numerics
|
//
|
// Copyright (c) 2009-2016 Math.NET
|
//
|
// Permission is hereby granted, free of charge, to any person
|
// obtaining a copy of this software and associated documentation
|
// files (the "Software"), to deal in the Software without
|
// restriction, including without limitation the rights to use,
|
// copy, modify, merge, publish, distribute, sublicense, and/or sell
|
// copies of the Software, and to permit persons to whom the
|
// Software is furnished to do so, subject to the following
|
// conditions:
|
//
|
// The above copyright notice and this permission notice shall be
|
// included in all copies or substantial portions of the Software.
|
//
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
|
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
|
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
// OTHER DEALINGS IN THE SOFTWARE.
|
// </copyright>
|
|
using System;
|
using IStation.Numerics.LinearAlgebra;
|
|
namespace IStation.Numerics.OdeSolvers
|
{
|
/// <summary>
|
/// ODE Solver Algorithms
|
/// </summary>
|
public static class RungeKutta
|
{
|
/// <summary>
|
/// Second Order Runge-Kutta method
|
/// </summary>
|
/// <param name="y0">initial value</param>
|
/// <param name="start">start time</param>
|
/// <param name="end">end time</param>
|
/// <param name="N">Size of output array(the larger, the finer)</param>
|
/// <param name="f">ode function</param>
|
/// <returns>approximations</returns>
|
public static double[] SecondOrder(double y0, double start, double end, int N, Func<double, double, double> f)
|
{
|
double dt = (end - start) / (N - 1);
|
double k1 = 0;
|
double k2 = 0;
|
double t = start;
|
double[] y = new double[N];
|
y[0] = y0;
|
for (int i = 1; i < N; i++)
|
{
|
k1 = f(t, y0);
|
k2 = f(t + dt, y0 + k1 * dt);
|
y[i] = y0 + dt * 0.5 * (k1 + k2);
|
t += dt;
|
y0 = y[i];
|
}
|
return y;
|
}
|
|
/// <summary>
|
/// Fourth Order Runge-Kutta method
|
/// </summary>
|
/// <param name="y0">initial value</param>
|
/// <param name="start">start time</param>
|
/// <param name="end">end time</param>
|
/// <param name="N">Size of output array(the larger, the finer)</param>
|
/// <param name="f">ode function</param>
|
/// <returns>approximations</returns>
|
public static double[] FourthOrder(double y0, double start, double end, int N, Func<double, double, double> f)
|
{
|
double dt = (end - start) / (N - 1);
|
double k1 = 0;
|
double k2 = 0;
|
double k3 = 0;
|
double k4 = 0;
|
double t = start;
|
double[] y = new double[N];
|
y[0] = y0;
|
for (int i = 1; i < N; i++)
|
{
|
k1 = f(t, y0);
|
k2 = f(t + dt / 2, y0 + k1 * dt / 2);
|
k3 = f(t + dt / 2, y0 + k2 * dt / 2);
|
k4 = f(t + dt, y0 + k3 * dt);
|
y[i] = y0 + dt / 6 * (k1 + 2 * k2 + 2 * k3 + k4);
|
t += dt;
|
y0 = y[i];
|
}
|
return y;
|
}
|
|
/// <summary>
|
/// Second Order Runge-Kutta to solve ODE SYSTEM
|
/// </summary>
|
/// <param name="y0">initial vector</param>
|
/// <param name="start">start time</param>
|
/// <param name="end">end time</param>
|
/// <param name="N">Size of output array(the larger, the finer)</param>
|
/// <param name="f">ode function</param>
|
/// <returns>approximations</returns>
|
public static Vector<double>[] SecondOrder(Vector<double> y0, double start, double end, int N, Func<double, Vector<double>, Vector<double>> f)
|
{
|
double dt = (end - start) / (N - 1);
|
Vector<double> k1, k2;
|
Vector<double>[] y = new Vector<double>[N];
|
double t = start;
|
y[0] = y0;
|
for (int i = 1; i < N; i++)
|
{
|
k1 = f(t, y0);
|
k2 = f(t, y0 + k1 * dt);
|
y[i] = y0 + dt * 0.5 * (k1 + k2);
|
t += dt;
|
y0 = y[i];
|
}
|
return y;
|
}
|
|
/// <summary>
|
/// Fourth Order Runge-Kutta to solve ODE SYSTEM
|
/// </summary>
|
/// <param name="y0">initial vector</param>
|
/// <param name="start">start time</param>
|
/// <param name="end">end time</param>
|
/// <param name="N">Size of output array(the larger, the finer)</param>
|
/// <param name="f">ode function</param>
|
/// <returns>approximations</returns>
|
public static Vector<double>[] FourthOrder(Vector<double> y0, double start, double end, int N, Func<double, Vector<double>, Vector<double>> f)
|
{
|
double dt = (end - start) / (N - 1);
|
Vector<double> k1, k2, k3, k4;
|
Vector<double>[] y = new Vector<double>[N];
|
double t = start;
|
y[0] = y0;
|
for (int i = 1; i < N; i++)
|
{
|
k1 = f(t, y0);
|
k2 = f(t + dt / 2, y0 + k1 * dt / 2);
|
k3 = f(t + dt / 2, y0 + k2 * dt / 2);
|
k4 = f(t + dt, y0 + k3 * dt);
|
y[i] = y0 + dt / 6 * (k1 + 2 * k2 + 2 * k3 + k4);
|
t += dt;
|
y0 = y[i];
|
}
|
return y;
|
}
|
}
|
}
|