rp
3 天以前 0bf0288fcff055dec3c63856d1c5bff7244d79b3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
# xgboost修改版本
import os
import pickle
import pandas as pd
import numpy as np
from numpy.lib.stride_tricks import sliding_window_view
import tkinter as tk
import tkinter.font as tkfont
from tkinter import ttk
from datetime import timedelta
from time import time
import matplotlib.pyplot as plt
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg, NavigationToolbar2Tk
from xgboost import XGBRegressor
from lunardate import LunarDate
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error, mean_absolute_error
import matplotlib
 
# 配置 matplotlib 中文显示
matplotlib.rcParams['font.sans-serif'] = ['SimHei', 'Microsoft YaHei', 'SimSun', 'Arial Unicode MS']
matplotlib.rcParams['axes.unicode_minus'] = False
matplotlib.rcParams['font.family'] = 'sans-serif'
 
# 全局缓存变量及特征名称 
cached_model = None
last_training_time = None
feature_columns = None
current_view = {'xlim': None, 'ylim': None}  # 用于存储当前图表视图
 
# 数据加载与预处理函数
# -------------------------------
def load_data(upstream_file, downstream_file, river_level_file=None, flow_file=None):
    """
    加载所有相关数据并进行数据质量处理
    """
    try:
        # 读取上游和下游数据
        upstream_df = pd.read_csv(upstream_file)
        downstream_df = pd.read_csv(downstream_file)
    except FileNotFoundError:
        print("文件未找到,请检查路径")
        return None
 
    # 确保列名一致
    upstream_df.columns = ['DateTime', 'TagName', 'Value']
    downstream_df.columns = ['DateTime', 'TagName', 'Value']
 
    # 转换时间格式并设置为索引
    upstream_df['DateTime'] = pd.to_datetime(upstream_df['DateTime'])
    downstream_df['DateTime'] = pd.to_datetime(downstream_df['DateTime'])
 
    # 设置DateTime为索引
    upstream_df.set_index('DateTime', inplace=True)
    downstream_df.set_index('DateTime', inplace=True)
 
    # 数值处理 - 使用更稳健的转换方法
    for df in [upstream_df, downstream_df]:
        df['Value'] = pd.to_numeric(df['Value'], errors='coerce')
        # 使用IQR方法检测异常值
        Q1 = df['Value'].quantile(0.25)
        Q3 = df['Value'].quantile(0.75)
        IQR = Q3 - Q1
        lower_bound = Q1 - 1.5 * IQR
        upper_bound = Q3 + 1.5 * IQR
        # 将异常值替换为边界值
        df.loc[df['Value'] < lower_bound, 'Value'] = lower_bound
        df.loc[df['Value'] > upper_bound, 'Value'] = upper_bound
 
    # 过滤盐度小于5的数据
    upstream_df = upstream_df[upstream_df['Value'] >= 5]
    downstream_df = downstream_df[downstream_df['Value'] >= 5]
 
    # 重命名Value列
    upstream_df = upstream_df.rename(columns={'Value': 'upstream'})[['upstream']]
    downstream_df = downstream_df.rename(columns={'Value': 'downstream'})[['downstream']]
 
    # 合并数据
    merged_df = pd.merge(upstream_df, downstream_df, left_index=True, right_index=True, how='inner')
 
    # 加载长江水位数据(如果提供)
    if river_level_file:
        try:
            river_level_df = pd.read_csv(river_level_file)
            print(f"成功读取水位数据文件: {river_level_file}")
            
            # 确保列名一致
            if len(river_level_df.columns) >= 3:
                river_level_df.columns = ['DateTime', 'TagName', 'Value']
            elif len(river_level_df.columns) == 2:
                river_level_df.columns = ['DateTime', 'Value']
                river_level_df['TagName'] = 'water_level'
            
            # 数据处理
            river_level_df['DateTime'] = pd.to_datetime(river_level_df['DateTime'])
            river_level_df.set_index('DateTime', inplace=True)
            river_level_df['Value'] = pd.to_numeric(river_level_df['Value'], errors='coerce')
            
            # 使用IQR方法处理异常值
            Q1 = river_level_df['Value'].quantile(0.25)
            Q3 = river_level_df['Value'].quantile(0.75)
            IQR = Q3 - Q1
            lower_bound = Q1 - 1.5 * IQR
            upper_bound = Q3 + 1.5 * IQR
            river_level_df.loc[river_level_df['Value'] < lower_bound, 'Value'] = lower_bound
            river_level_df.loc[river_level_df['Value'] > upper_bound, 'Value'] = upper_bound
            
            # 重命名并保留需要的列
            river_level_df = river_level_df.rename(columns={'Value': 'water_level'})[['water_level']]
            
            # 合并到主数据框
            merged_df = pd.merge(merged_df, river_level_df, left_index=True, right_index=True, how='left')
            
            # 对水位数据进行插值处理
            merged_df['water_level'] = merged_df['water_level'].interpolate(method='time', limit=24)
            merged_df['water_level'] = merged_df['water_level'].fillna(method='ffill').fillna(method='bfill')
            
            # 创建平滑的水位数据
            merged_df['water_level_smooth'] = merged_df['water_level'].rolling(window=24, min_periods=1, center=True).mean()
            
            # 添加水位趋势特征
            merged_df['water_level_trend_1h'] = merged_df['water_level_smooth'].diff(1)
            merged_df['water_level_trend_24h'] = merged_df['water_level_smooth'].diff(24)
            
            print(f"水位数据加载成功,范围: {merged_df['water_level'].min()} - {merged_df['water_level'].max()}")
        except Exception as e:
            print(f"水位数据加载失败: {str(e)}")
 
    # 加载大通流量数据(如果提供)
    if flow_file:
        try:
            flow_df = pd.read_csv(flow_file)
            print(f"成功读取流量数据文件: {flow_file}")
            
            # 确保列名一致
            if len(flow_df.columns) >= 3:
                flow_df.columns = ['DateTime', 'TagName', 'Value']
            elif len(flow_df.columns) == 2:
                flow_df.columns = ['DateTime', 'Value']
                flow_df['TagName'] = 'flow'
            
            # 数据处理
            flow_df['DateTime'] = pd.to_datetime(flow_df['DateTime'])
            flow_df.set_index('DateTime', inplace=True)
            flow_df['Value'] = pd.to_numeric(flow_df['Value'], errors='coerce')
            
            # 使用IQR方法处理异常值
            Q1 = flow_df['Value'].quantile(0.25)
            Q3 = flow_df['Value'].quantile(0.75)
            IQR = Q3 - Q1
            lower_bound = Q1 - 1.5 * IQR
            upper_bound = Q3 + 1.5 * IQR
            flow_df.loc[flow_df['Value'] < lower_bound, 'Value'] = lower_bound
            flow_df.loc[flow_df['Value'] > upper_bound, 'Value'] = upper_bound
            
            # 重命名并保留需要的列
            flow_df = flow_df.rename(columns={'Value': 'flow'})[['flow']]
            
            # 合并到主数据框
            merged_df = pd.merge(merged_df, flow_df, left_index=True, right_index=True, how='left')
            
            # 对流量数据进行插值处理
            merged_df['flow'] = merged_df['flow'].interpolate(method='time', limit=24)
            merged_df['flow'] = merged_df['flow'].fillna(method='ffill').fillna(method='bfill')
            
            # 创建平滑的流量数据
            merged_df['flow_smooth'] = merged_df['flow'].rolling(window=24, min_periods=1, center=True).mean()
            
            # 添加流量趋势特征
            merged_df['flow_trend_1h'] = merged_df['flow_smooth'].diff(1)
            merged_df['flow_trend_24h'] = merged_df['flow_smooth'].diff(24)
            
            # 添加流量统计特征
            merged_df['mean_1d_flow'] = merged_df['flow_smooth'].rolling(window=24, min_periods=1).mean()
            merged_df['mean_3d_flow'] = merged_df['flow_smooth'].rolling(window=72, min_periods=1).mean()
            merged_df['std_1d_flow'] = merged_df['flow_smooth'].rolling(window=24, min_periods=1).std()
            
            # 添加流量变化特征
            merged_df['flow_change_1h'] = merged_df['flow_smooth'].diff(1)
            merged_df['flow_change_24h'] = merged_df['flow_smooth'].diff(24)
            
            # # 添加流量与盐度比率(确保下游平滑数据已创建)
            # if 'downstream_smooth' in merged_df.columns:
            #     merged_df['flow_sal_ratio'] = merged_df['flow_smooth'] / merged_df['downstream_smooth']
            # else:
            #     print("警告: 下游平滑数据未创建,跳过flow_sal_ratio计算")
            
            print(f"流量数据加载成功,范围: {merged_df['flow'].min()} - {merged_df['flow'].max()} m³/s")
        except Exception as e:
            print(f"流量数据加载失败: {str(e)}")
 
    # 对盐度数据进行插值和平滑处理
    merged_df['upstream'] = merged_df['upstream'].interpolate(method='time', limit=24)
    merged_df['downstream'] = merged_df['downstream'].interpolate(method='time', limit=24)
 
    # 使用前向后向填充处理剩余的NaN值
    merged_df['upstream'] = merged_df['upstream'].ffill().bfill()
    merged_df['downstream'] = merged_df['downstream'].ffill().bfill()
 
    # 创建平滑的盐度数据
    merged_df['upstream_smooth'] = merged_df['upstream'].rolling(window=24, min_periods=1, center=True).mean()
    merged_df['downstream_smooth'] = merged_df['downstream'].rolling(window=24, min_periods=1, center=True).mean()
 
    # 添加趋势特征
    merged_df['upstream_trend_1h'] = merged_df['upstream_smooth'].diff(1)
    merged_df['upstream_trend_24h'] = merged_df['upstream_smooth'].diff(24)
    merged_df['downstream_trend_1h'] = merged_df['downstream_smooth'].diff(1)
    merged_df['downstream_trend_24h'] = merged_df['downstream_smooth'].diff(24)
 
    # 填充NaN值
    merged_df['upstream_trend_1h'] = merged_df['upstream_trend_1h'].fillna(0)
    merged_df['upstream_trend_24h'] = merged_df['upstream_trend_24h'].fillna(0)
    merged_df['downstream_trend_1h'] = merged_df['downstream_trend_1h'].fillna(0)
    merged_df['downstream_trend_24h'] = merged_df['downstream_trend_24h'].fillna(0)
 
    # 对低盐度部分使用更大的窗口进行平滑
    low_sal_mask = merged_df['upstream'] < 50
    if low_sal_mask.any():
        merged_df.loc[low_sal_mask, 'upstream_smooth'] = merged_df.loc[low_sal_mask, 'upstream']\
            .rolling(window=48, min_periods=1, center=True).mean()
 
    # 数据验证和统计
    print("\n数据质量统计:")
    print(f"总数据量: {len(merged_df)}")
    print(f"上游盐度范围: {merged_df['upstream'].min():.2f} - {merged_df['upstream'].max():.2f}")
    print(f"下游盐度范围: {merged_df['downstream'].min():.2f} - {merged_df['downstream'].max():.2f}")
    
    if 'water_level' in merged_df.columns:
        print(f"水位范围: {merged_df['water_level'].min():.2f} - {merged_df['water_level'].max():.2f}")
        print(f"水位缺失比例: {merged_df['water_level'].isna().mean()*100:.2f}%")
    
    if 'flow' in merged_df.columns:
        print(f"流量范围: {merged_df['flow'].min():.2f} - {merged_df['flow'].max():.2f} m³/s")
        print(f"流量缺失比例: {merged_df['flow'].isna().mean()*100:.2f}%")
 
    # 重置索引,将DateTime作为列
    merged_df = merged_df.reset_index()
 
    return merged_df
 
# df = load_data('青龙港1.csv', '一取水.csv')
 
# 测试
# df = load_data('青龙港1.csv', '一取水.csv')
# df.to_csv('merged_data.csv', index=False)
# print(f"Merged data saved to 'merged_data.csv' successfully")
 
# # 绘制盐度随时间变化图
# plt.figure(figsize=(12, 6))
# plt.plot(df['DateTime'], df['upstream_smooth'], label='上游盐度', color='blue')
# plt.plot(df['DateTime'], df['downstream_smooth'], label='下游盐度', color='red')
# plt.xlabel('时间')
# plt.ylabel('盐度')
# plt.title('盐度随时间变化图')
# plt.legend()
# plt.grid(True)
# plt.tight_layout()
# plt.savefig('salinity_time_series.png', dpi=300)
# plt.show()
 
 
# ----------------------特征工程部分
 
 
# -------------------------------
# 添加农历(潮汐)特征
# -------------------------------
def add_lunar_features(df):
    lunar_day, lunar_phase_sin, lunar_phase_cos, is_high_tide = [], [], [], []
    for dt in df['DateTime']:
        ld = LunarDate.fromSolarDate(dt.year, dt.month, dt.day)
        lunar_day.append(ld.day)
        lunar_phase_sin.append(np.sin(2 * np.pi * ld.day / 15))
        lunar_phase_cos.append(np.cos(2 * np.pi * ld.day / 15))
        is_high_tide.append(1 if (ld.day <= 5 or (ld.day >= 16 and ld.day <= 20)) else 0)
    df['lunar_day'] = lunar_day
    df['lunar_phase_sin'] = lunar_phase_sin
    df['lunar_phase_cos'] = lunar_phase_cos
    df['is_high_tide'] = is_high_tide
    return df
 
 
# -------------------------------
# 生成延迟特征(向量化,利用 shift)
# -------------------------------
def batch_create_delay_features(df, delay_hours):
    """
    为数据框中的特定列创建延迟特征
    """
    # 定义需要创建延迟特征的列
    target_columns = ['upstream_smooth']
    
 
 # target_columns = ['upstream_smooth', 'downstream_smooth']
    # # 如果存在水位数据列,也为它创建延迟特征  暂时不使用
    # if 'water_level_smooth' in df.columns:
    #     target_columns.append('water_level_smooth')
    # elif 'water_level' in df.columns:
    #     print("注意: 水位平滑列不存在,使用原始水位列创建延迟特征")
    #     # 创建水位平滑列
    #     df['water_level_smooth'] = df['water_level'].rolling(window=24, min_periods=1, center=True).mean()
    #     df['water_level_smooth'] = df['water_level_smooth'].fillna(df['water_level'])
    #     target_columns.append('water_level_smooth')
 
    # 创建延迟特征
    for column in target_columns:
        if column in df.columns:
            for delay in delay_hours:
                df[f'{column.split("_")[0]}_delay_{delay}h'] = df[column].shift(delay)
        else:
            print(f"警告: 列 {column} 不存在,跳过创建延迟特征")
            
    return df
 
 
# 生成其他特征
def generate_features(df):
    """
    生成其他特征,包括历史数据、时间特征、统计特征和外部特征,并将这些特征添加到原始DataFrame中
    """
    try:
        # 创建平滑的盐度数据
        df['upstream_smooth'] = df['upstream'].rolling(window=24, min_periods=1, center=True).mean()
        df['downstream_smooth'] = df['downstream'].rolling(window=24, min_periods=1, center=True).mean()
        
        # 时间特征
        df['hour'] = df['DateTime'].dt.hour
        df['weekday'] = df['DateTime'].dt.dayofweek
        df['month'] = df['DateTime'].dt.month
        
        # 时间特征的sin和cos转换
        df['hour_sin'] = np.sin(2 * np.pi * df['hour'] / 24)
        df['hour_cos'] = np.cos(2 * np.pi * df['hour'] / 24)
        df['weekday_sin'] = np.sin(2 * np.pi * df['weekday'] / 7)
        df['weekday_cos'] = np.cos(2 * np.pi * df['weekday'] / 7)
        df['month_sin'] = np.sin(2 * np.pi * df['month'] / 12)
        df['month_cos'] = np.cos(2 * np.pi * df['month'] / 12)
        
        # 统计特征
        df['mean_1d_up'] = df['upstream_smooth'].rolling(window=24, min_periods=1).mean()
        df['mean_3d_up'] = df['upstream_smooth'].rolling(window=72, min_periods=1).mean()
        df['std_1d_up'] = df['upstream_smooth'].rolling(window=24, min_periods=1).std()
        
        df['mean_1d_down'] = df['downstream_smooth'].rolling(window=24, min_periods=1).mean()
        df['mean_3d_down'] = df['downstream_smooth'].rolling(window=72, min_periods=1).mean()
        df['std_1d_down'] = df['downstream_smooth'].rolling(window=24, min_periods=1).std()
        
        # 趋势特征
        df['trend_1h_up'] = df['upstream_smooth'].diff(1)
        df['trend_3h_up'] = df['upstream_smooth'].diff(3)
        df['trend_6h_up'] = df['upstream_smooth'].diff(6)
        df['trend_12h_up'] = df['upstream_smooth'].diff(12)
        df['trend_24h_up'] = df['upstream_smooth'].diff(24)
        
        df['trend_1h_down'] = df['downstream_smooth'].diff(1)
        df['trend_3h_down'] = df['downstream_smooth'].diff(3)
        df['trend_6h_down'] = df['downstream_smooth'].diff(6)
        df['trend_12h_down'] = df['downstream_smooth'].diff(12)
        df['trend_24h_down'] = df['downstream_smooth'].diff(24)
        
        # 外部特征(水位和流量)
        if 'water_level_smooth' in df.columns:
            df['water_level_trend_1h'] = df['water_level_smooth'].diff(1)
            df['water_level_trend_24h'] = df['water_level_smooth'].diff(24)
            df['mean_1d_water_level'] = df['water_level_smooth'].rolling(window=24, min_periods=1).mean()
            df['mean_3d_water_level'] = df['water_level_smooth'].rolling(window=72, min_periods=1).mean()
            df['std_1d_water_level'] = df['water_level_smooth'].rolling(window=24, min_periods=1).std()
        
        if 'flow_smooth' in df.columns:
            df['flow_trend_1h'] = df['flow_smooth'].diff(1)
            df['flow_trend_24h'] = df['flow_smooth'].diff(24)
            df['mean_1d_flow'] = df['flow_smooth'].rolling(window=24, min_periods=1).mean()
            df['mean_3d_flow'] = df['flow_smooth'].rolling(window=72, min_periods=1).mean()
            df['std_1d_flow'] = df['flow_smooth'].rolling(window=24, min_periods=1).std()
        
        return df
        
    except Exception as e:
        print(f"特征生成异常: {e}")
        return df
 
 
# -------------------------------
# 向量化构造训练样本(优化特征工程)
# -------------------------------
def create_features_vectorized(df, look_back=168, forecast_horizon=1):
    """
    向量化构造训练样本,使用过去7天的所有原始数据来预测未来1天的下游盐度均值
    """
    try:
        # 确保数据按时间排序
        df = df.sort_values('DateTime')
        
        # 获取所有数值列(排除DateTime列)
        numeric_columns = df.select_dtypes(include=[np.number]).columns.tolist()
        if 'DateTime' in numeric_columns:
            numeric_columns.remove('DateTime')
        
        # 初始化特征和标签列表
        features = []  # x输入
        targets = []   # y输出
        
        # 使用滑动窗口创建样本
        for i in range(len(df) - look_back - forecast_horizon + 1):
            # 获取7天的特征窗口
            window = df.iloc[i:i+look_back]
            
            # 提取特征 - 使用所有原始数据
            window_features = []
            for col in numeric_columns:
                # 获取列数据并处理NaN值
                col_values = window[col].fillna(method='ffill').fillna(method='bfill').values
                window_features.extend(col_values)
            
            # 添加时间特征
            current_date = window['DateTime'].iloc[-1]
            window_features.extend([
                current_date.month,
                current_date.day,
                current_date.weekday()
            ])
            
            # 获取目标值(未来1天的下游盐度均值)
            next_day = df.iloc[i+look_back:i+look_back+24]  # 获取未来24小时的数据
            # 处理目标值中的NaN
            target_values = next_day['downstream_smooth'].fillna(method='ffill').fillna(method='bfill').values
            target = np.mean(target_values)
            
            # 检查特征和目标值是否有效
            if not np.any(np.isnan(window_features)) and not np.isnan(target) and not np.isinf(target):
                features.append(window_features)
                targets.append(target)
        
        if not features:
            print("警告: 未能生成任何有效特征")
            return np.array([]), np.array([])
            
        # 转换为numpy数组
        X = np.array(features)
        y = np.array(targets)
        
        print(f"成功生成特征矩阵,形状: {X.shape}")
        return X, y
        
    except Exception as e:
        print(f"特征创建异常: {e}")
        return np.array([]), np.array([])
 
def generate_prediction_features(df, current_date, look_back=168):
    """
    为预测生成特征,使用与create_features_vectorized相同的特征生成逻辑
    """
    try:
        # 确保数据按时间排序
        df = df.sort_values('DateTime')
        
        # 获取所有数值列(排除DateTime列)
        numeric_columns = df.select_dtypes(include=[np.number]).columns.tolist()
        if 'DateTime' in numeric_columns:
            numeric_columns.remove('DateTime')
        
        # 找到当前日期在数据中的位置
        current_idx = df[df['DateTime'] <= current_date].index[-1]
        
        # 获取过去168小时(7天)的数据窗口
        if current_idx < look_back:
            print(f"数据不足,需要{look_back}小时的数据,但只有{current_idx+1}小时")
            return None
            
        window = df.iloc[current_idx-look_back+1:current_idx+1]
        
        # 提取特征 - 使用所有原始数据
        features = []
        for col in numeric_columns:
            # 直接使用原始数据作为特征
            features.extend(window[col].values)
        
        # 添加时间特征
        features.extend([
            current_date.month,
            current_date.day,
            current_date.weekday()
        ])
        
        return np.array(features)
        
    except Exception as e:
        print(f"预测特征生成异常: {e}")
        return None
 
 
# -------------------------------
# 获取模型准确度指标
# -------------------------------
def get_model_metrics():
    """获取保存在模型缓存中的准确度指标"""
    model_cache_file = 'salinity_model.pkl'
    if os.path.exists(model_cache_file):
        try:
            with open(model_cache_file, 'rb') as f:
                model_data = pickle.load(f)
                return {
                    'rmse': model_data.get('rmse', None),
                    'mae': model_data.get('mae', None)
                }
        except Exception as e:
            print(f"获取模型指标失败: {e}")
    return None
 
# -------------------------------
# 模型训练与预测,展示验证准确度(RMSE, MAE)
# -------------------------------
def train_and_predict(df, start_time, force_retrain=False):
    global cached_model, last_training_time
    model_cache_file = 'salinity_model.pkl'
    model_needs_training = True
 
    if os.path.exists(model_cache_file) and force_retrain:
        try:
            os.remove(model_cache_file)
            print("已删除旧模型缓存(强制重新训练)")
        except Exception as e:
            print("删除缓存异常:", e)
 
    train_df = df[df['DateTime'] < start_time].copy()
    
    # 创建测试特征,检查当前特征维度
    test_X, test_y = create_features_vectorized(train_df, look_back=7, forecast_horizon=1)
    if test_X is None or test_y is None:
        print("特征生成失败")
        return None, None, None, None
        
    current_feature_dim = test_X.shape[1] if len(test_X) > 0 else 0
    print(f"当前特征维度: {current_feature_dim}")
    
    cached_feature_dim = None
    
    if not force_retrain and cached_model is not None and last_training_time is not None:
        if last_training_time >= train_df['DateTime'].max():
            try:
                cached_feature_dim = cached_model.n_features_in_
                print(f"缓存模型特征维度: {cached_feature_dim}")
                
                if cached_feature_dim == current_feature_dim:
                    model_needs_training = False
                    print(f"使用缓存模型,训练时间: {last_training_time}")
                else:
                    print(f"特征维度不匹配(缓存模型: {cached_feature_dim},当前: {current_feature_dim}),需要重新训练")
            except Exception as e:
                print(f"检查模型特征维度失败: {e}")
    elif not force_retrain and os.path.exists(model_cache_file):
        try:
            with open(model_cache_file, 'rb') as f:
                model_data = pickle.load(f)
                cached_model = model_data['model']
                last_training_time = model_data['training_time']
                
                try:
                    cached_feature_dim = cached_model.n_features_in_
                    print(f"文件缓存模型特征维度: {cached_feature_dim}")
                    if cached_feature_dim == current_feature_dim:
                        if last_training_time >= train_df['DateTime'].max():
                            model_needs_training = False
                            print(f"从文件加载模型,训练时间: {last_training_time}")
                        else:
                            print(f"特征维度不匹配(文件模型: {cached_feature_dim},当前: {current_feature_dim}),需要重新训练")
                except Exception as e:
                    print(f"检查模型特征维度失败: {e}")
        except Exception as e:
            print("加载模型失败:", e)
 
    if model_needs_training:
        print("开始训练新模型...")
        if len(train_df) < 100:
            print("训练数据不足")
            return None, None, None, None
 
        start_train = time()
        X, y = create_features_vectorized(train_df, look_back=7, forecast_horizon=1)
        if X is None or y is None:
            print("特征生成失败")
            return None, None, None, None
            
        if len(X) == 0 or len(y) == 0:
            print("样本生成不足,训练终止")
            return None, None, None, None
            
        print(f"训练样本数量: {X.shape[0]}, 特征维度: {X.shape[1]}")
        X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.1, random_state=42)
        
        # 创建模型时设置 early_stopping_rounds
        model = XGBRegressor(
            n_estimators=200,
            learning_rate=0.1,
            max_depth=6,
            min_child_weight=2,
            subsample=0.8,
            colsample_bytree=0.8,
            gamma=0.1,
            reg_alpha=0.1,
            reg_lambda=1.0,
            n_jobs=-1,
            random_state=42,
            early_stopping_rounds=10
        )
        
        try:
            model.fit(X_train, y_train,
                     eval_set=[(X_val, y_val)],
                     eval_metric='rmse',
                     verbose=False)
            
            # 在验证集上计算 RMSE 和 MAE
            y_val_pred = model.predict(X_val)
            rmse = np.sqrt(mean_squared_error(y_val, y_val_pred))
            mae = mean_absolute_error(y_val, y_val_pred)
            print(f"验证集 RMSE: {rmse:.4f}, MAE: {mae:.4f}")
            
            # 特征重要性分析
            feature_importance = model.feature_importances_
            sorted_idx = np.argsort(feature_importance)[::-1]
            
            # 生成特征名称
            feature_names = []
            # 获取所有数值列
            numeric_columns = train_df.select_dtypes(include=[np.number]).columns.tolist()
            if 'DateTime' in numeric_columns:
                numeric_columns.remove('DateTime')
            
            # 为每个数值列添加统计特征名称
            for col in numeric_columns:
                feature_names.extend([
                    f'{col}_7d_mean_mean',
                    f'{col}_7d_mean_std',
                    f'{col}_7d_std_mean',
                    f'{col}_7d_last_mean',
                    f'{col}_7d_mean_change'
                ])
            
            # 添加时间特征名称
            feature_names.extend(['month', 'day', 'weekday'])
            
            # 确保特征名称数量与重要性数组长度匹配
            if len(feature_names) != len(feature_importance):
                print(f"警告: 特征名称数量({len(feature_names)})与重要性数组长度({len(feature_importance)})不匹配")
                # 截取或填充特征名称以匹配重要性数组长度
                feature_names = feature_names[:len(feature_importance)]
            
            # 打印前10个重要特征
            print("\nTop 10 重要特征:")
            for i in range(min(10, len(sorted_idx))):
                print(f"{i+1}. {feature_names[sorted_idx[i]]}: {feature_importance[sorted_idx[i]]:.6f}")
            
            last_training_time = start_time
            cached_model = model
            
            with open(model_cache_file, 'wb') as f:
                pickle.dump({
                    'model': model,
                    'training_time': last_training_time,
                    'feature_columns': feature_names,
                    'rmse': rmse,
                    'mae': mae,
                    'feature_dim': current_feature_dim
                }, f)
            print(f"模型训练完成,耗时: {time() - start_train:.2f}秒,特征维度: {current_feature_dim}")
        except Exception as e:
            print("模型训练异常:", e)
            return None, None, None, None
    else:
        model = cached_model
 
    # 预测部分
    try:
        # 初始化存储预测结果的列表
        future_dates = [start_time + timedelta(days=i) for i in range(5)]
        predictions = np.zeros(5)
        
        # 创建预测所需的特征矩阵
        X_pred = []
        for i in range(5):
            current_date = future_dates[i]
            features = generate_prediction_features(df, current_date, look_back=7)
            if features is None:
                print(f"生成预测特征失败: {current_date}")
                return None, None, None, None
            X_pred.append(features)
        
        # 批量预测
        X_pred = np.array(X_pred)
        predictions = model.predict(X_pred)
        
        # 计算预测的置信区间
        if model_needs_training:
            # 使用训练时的验证集误差
            y_train_pred = model.predict(X_train)
            train_std = np.std(y_train - y_train_pred)
        else:
            # 使用模型缓存中的RMSE作为误差估计
            try:
                with open(model_cache_file, 'rb') as f:
                    model_data = pickle.load(f)
                    train_std = model_data.get('rmse', 1.0)  # 如果没有RMSE,使用默认值1.0
            except:
                train_std = 1.0  # 如果无法获取RMSE,使用默认值1.0
        
        prediction_intervals = np.array([
            predictions - 1.96 * train_std,
            predictions + 1.96 * train_std
        ])
        
        return future_dates, predictions, model, prediction_intervals
    except Exception as e:
        print("预测过程异常:", e)
        return None, None, None, None
 
# -------------------------------
# GUI界面部分
# -------------------------------
def run_gui():
    def configure_gui_fonts():
        font_names = ['微软雅黑', 'Microsoft YaHei', 'SimSun', 'SimHei']
        for font_name in font_names:
            try:
                default_font = tkfont.nametofont("TkDefaultFont")
                default_font.configure(family=font_name)
                text_font = tkfont.nametofont("TkTextFont")
                text_font.configure(family=font_name)
                fixed_font = tkfont.nametofont("TkFixedFont")
                fixed_font.configure(family=font_name)
                return True
            except Exception as e:
                continue
        return False
 
    def on_predict():
        try:
            predict_start = time()
            status_label.config(text="预测中...")
            root.update()
            start_time_dt = pd.to_datetime(entry.get())
            force_retrain = retrain_var.get()
            future_dates, predictions, model, prediction_intervals = train_and_predict(df, start_time_dt, force_retrain)
            if future_dates is None or predictions is None:
                status_label.config(text="预测失败")
                return
 
            # 获取并显示模型准确度指标
            model_metrics = get_model_metrics()
            if model_metrics:
                metrics_text = f"模型准确度 - RMSE: {model_metrics['rmse']:.4f}, MAE: {model_metrics['mae']:.4f}"
                metrics_label.config(text=metrics_text)
 
            # 清除图形并重新绘制
            ax.clear()
            
            # 创建双y轴图表
            ax2 = None
            has_water_level = 'water_level' in df.columns and 'water_level_smooth' in df.columns
            if has_water_level:
                try:
                    ax2 = ax.twinx()
                except Exception as e:
                    print(f"创建双y轴失败: {e}")
                    ax2 = None
            
            # 绘制历史数据(最近 120 天)
            history_end = min(start_time_dt, df['DateTime'].max())
            history_start = history_end - timedelta(days=120)
            hist_data = df[(df['DateTime'] >= history_start) & (df['DateTime'] <= history_end)]
            
            # 确保数据不为空
            if len(hist_data) == 0:
                status_label.config(text="错误: 所选时间范围内没有历史数据")
                return
                
            # 绘制基本数据
            ax.plot(hist_data['DateTime'], hist_data['downstream_smooth'], 
                    label='一取水(下游)盐度', color='blue', linewidth=1.5)
            ax.plot(hist_data['DateTime'], hist_data['upstream_smooth'], 
                    label='青龙港(上游)盐度', color='purple', linewidth=1.5, alpha=0.7)
            
            # 绘制水位数据(如果有)
            if ax2 is not None and has_water_level:
                try:
                    # 检查水位数据是否有足够的非NaN值
                    valid_water_level = hist_data['water_level_smooth'].dropna()
                    if len(valid_water_level) > 10:  # 至少有10个有效值
                        ax2.plot(hist_data['DateTime'], hist_data['water_level_smooth'], 
                                label='长江水位', color='green', linewidth=1.5, linestyle='--')
                        ax2.set_ylabel('水位 (m)', color='green')
                        ax2.tick_params(axis='y', labelcolor='green')
                    else:
                        print("水位数据有效值不足,跳过水位图")
                except Exception as e:
                    print(f"绘制水位数据时出错: {e}")
            
            
            # 绘制预测数据
            if len(future_dates) > 0 and len(predictions) > 0:
                ax.plot(future_dates, predictions, marker='o', linestyle='--', 
                        label='递归预测盐度', color='red', linewidth=2)
                
                # 添加预测的置信区间
                if prediction_intervals is not None:
                    ax.fill_between(future_dates, prediction_intervals[0], prediction_intervals[1], 
                                   color='red', alpha=0.2, label='95% 置信区间')
            
            # 绘制实际数据(如果有)
            actual_data = df[(df['DateTime'] >= start_time_dt) & (df['DateTime'] <= future_dates[-1])]
            actual_values = None
            
            if not actual_data.empty:
                actual_values = []
                # 获取与预测日期最接近的实际数据
                for pred_date in future_dates:
                    closest_idx = np.argmin(np.abs(actual_data['DateTime'] - pred_date))
                    actual_values.append(actual_data['downstream_smooth'].iloc[closest_idx])
                
                # 绘制实际盐度曲线
                ax.plot(future_dates, actual_values, marker='s', linestyle='-', 
                        label='实际盐度', color='orange', linewidth=2)
            
            # 设置图表标题和标签
            ax.set_xlabel('日期')
            ax.set_ylabel('盐度')
            ax.set_title(f"从 {start_time_dt.strftime('%Y-%m-%d %H:%M:%S')} 开始的递归单步盐度预测")
            
            # 设置图例并应用紧凑布局
            if ax2 is not None:
                try:
                    lines1, labels1 = ax.get_legend_handles_labels()
                    lines2, labels2 = ax2.get_legend_handles_labels()
                    if lines2:  # 确保水位数据已绘制
                        ax.legend(lines1 + lines2, labels1 + labels2, loc='best')
                    else:
                        ax.legend(loc='best')
                except Exception as e:
                    print(f"创建图例时出错: {e}")
                    ax.legend(loc='best')
            else:
                ax.legend(loc='best')
                
            fig.tight_layout()
            
            # 强制重绘
            plt.close(fig)
            fig.canvas.draw()
            fig.canvas.flush_events()
            plt.draw()
            
            # 更新预测结果文本
            predict_time = time() - predict_start
            status_label.config(text=f"递归预测完成 (耗时: {predict_time:.2f}秒)")
            
            # 显示预测结果
            result_text = "递归单步预测结果:\n\n"
            
            # 如果有实际值,计算差值和百分比误差
            if actual_values is not None:
                result_text += "日期         预测值    实际值        差值\n"
                result_text += "--------------------------------------\n"
                for i, (date, pred, actual) in enumerate(zip(future_dates, predictions, actual_values)):
                    diff = pred - actual
                    result_text += f"{date.strftime('%Y-%m-%d')}  {pred:6.2f}    {actual:6.2f}    {diff:6.2f}\n"
            else:
                result_text += "日期         预测值\n"
                result_text += "-------------------\n"
                for i, (date, pred) in enumerate(zip(future_dates, predictions)):
                    result_text += f"{date.strftime('%Y-%m-%d')}  {pred:6.2f}\n"
                result_text += "\n无实际值进行对比"
            
            update_result_text(result_text)
        except Exception as e:
            status_label.config(text=f"错误: {str(e)}")
            import traceback
            traceback.print_exc()
 
    def on_scroll(event):
        xlim = ax.get_xlim()
        ylim = ax.get_ylim()
        zoom_factor = 1.1
        x_data = event.xdata if event.xdata is not None else (xlim[0]+xlim[1])/2
        y_data = event.ydata if event.ydata is not None else (ylim[0]+ylim[1])/2
        x_rel = (x_data - xlim[0]) / (xlim[1] - xlim[0])
        y_rel = (y_data - ylim[0]) / (ylim[1] - ylim[0])
        if event.step > 0:
            new_width = (xlim[1]-xlim[0]) / zoom_factor
            new_height = (ylim[1]-ylim[0]) / zoom_factor
            x0 = x_data - x_rel * new_width
            y0 = y_data - y_rel * new_height
            ax.set_xlim([x0, x0+new_width])
            ax.set_ylim([y0, y0+new_height])
        else:
            new_width = (xlim[1]-xlim[0]) * zoom_factor
            new_height = (ylim[1]-ylim[0]) * zoom_factor
            x0 = x_data - x_rel * new_width
            y0 = y_data - y_rel * new_height
            ax.set_xlim([x0, x0+new_width])
            ax.set_ylim([y0, y0+new_height])
        canvas.draw_idle()
 
    def update_cursor(event):
        if event.inaxes == ax:
            canvas.get_tk_widget().config(cursor="fleur")
        else:
            canvas.get_tk_widget().config(cursor="")
 
    def reset_view():
        display_history()
        status_label.config(text="图表视图已重置")
 
    root = tk.Tk()
    root.title("青龙港-陈行盐度预测系统")
    try:
        configure_gui_fonts()
    except Exception as e:
        print("字体配置异常:", e)
        
    # 恢复输入框和控制按钮
    input_frame = ttk.Frame(root, padding="10")
    input_frame.pack(fill=tk.X)
    
    ttk.Label(input_frame, text="输入开始时间 (YYYY-MM-DD HH:MM:SS)").pack(side=tk.LEFT)
    entry = ttk.Entry(input_frame, width=25)
    entry.pack(side=tk.LEFT, padx=5)
    predict_button = ttk.Button(input_frame, text="预测", command=on_predict)
    predict_button.pack(side=tk.LEFT)
    status_label = ttk.Label(input_frame, text="提示: 第一次运行请勾选'强制重新训练模型'")
    status_label.pack(side=tk.LEFT, padx=10)
    
    control_frame = ttk.Frame(root, padding="5")
    control_frame.pack(fill=tk.X)
    retrain_var = tk.BooleanVar(value=False)
    ttk.Checkbutton(control_frame, text="强制重新训练模型", variable=retrain_var).pack(side=tk.LEFT)
    
    # 更新图例说明,加入水位数据信息
    if 'water_level' in df.columns:
        legend_label = ttk.Label(control_frame, text="图例: 紫色=青龙港上游数据, 蓝色=一取水下游数据, 红色=预测值, 绿色=长江水位")
    else:
        legend_label = ttk.Label(control_frame, text="图例: 紫色=青龙港上游数据, 蓝色=一取水下游数据, 红色=预测值, 橙色=实际值")
    legend_label.pack(side=tk.LEFT, padx=10)
    reset_button = ttk.Button(control_frame, text="重置视图", command=reset_view)
    reset_button.pack(side=tk.LEFT, padx=5)
    
    # 添加显示模型准确度的标签
    metrics_frame = ttk.Frame(root, padding="5")
    metrics_frame.pack(fill=tk.X)
    model_metrics = get_model_metrics()
    metrics_text = "模型准确度: 未知" if not model_metrics else f"模型准确度 - RMSE: {model_metrics['rmse']:.4f}, MAE: {model_metrics['mae']:.4f}"
    metrics_label = ttk.Label(metrics_frame, text=metrics_text)
    metrics_label.pack(side=tk.LEFT, padx=10)
    
    # 结果显示区域
    result_frame = ttk.Frame(root, padding="10")
    result_frame.pack(fill=tk.BOTH, expand=True)
    
    # 左侧放置图表
    plot_frame = ttk.Frame(result_frame, width=800, height=600)
    plot_frame.pack(side=tk.LEFT, fill=tk.BOTH, expand=True)
    plot_frame.pack_propagate(False)  # 不允许框架根据内容调整大小
    
    # 右侧放置文本结果
    text_frame = ttk.Frame(result_frame)
    text_frame.pack(side=tk.RIGHT, fill=tk.Y)
    
    # 使用等宽字体显示结果
    result_font = tkfont.Font(family="Courier New", size=10, weight="normal")
    
    # 添加文本框和滚动条
    result_text = tk.Text(text_frame, width=50, height=25, font=result_font, wrap=tk.NONE)
    result_text.pack(side=tk.LEFT, fill=tk.BOTH)
    result_scroll = ttk.Scrollbar(text_frame, orient="vertical", command=result_text.yview)
    result_scroll.pack(side=tk.RIGHT, fill=tk.Y)
    result_text.configure(yscrollcommand=result_scroll.set)
    result_text.configure(state=tk.DISABLED)  # 初始设为只读
 
    # 更新结果文本的函数
    def update_result_text(text):
        result_text.configure(state=tk.NORMAL)
        result_text.delete(1.0, tk.END)
        result_text.insert(tk.END, text)
        result_text.configure(state=tk.DISABLED)
 
    # 创建更高DPI的图形以获得更好的显示质量
    fig, ax = plt.subplots(figsize=(10, 6), dpi=100)
    fig.tight_layout(pad=3.0)  # 增加内边距,防止标签被截断
    
    # 创建画布并添加到固定大小的框架
    canvas = FigureCanvasTkAgg(fig, master=plot_frame)
    canvas.get_tk_widget().pack(side=tk.TOP, fill=tk.BOTH, expand=True)
    
    # 添加工具栏,包含缩放、保存等功能
    toolbar_frame = ttk.Frame(plot_frame)
    toolbar_frame.pack(side=tk.BOTTOM, fill=tk.X)
    toolbar = NavigationToolbar2Tk(canvas, toolbar_frame)
    toolbar.update()
    
    # 启用紧凑布局,并设置自动调整以使图表完全显示
    def on_resize(event):
        fig.tight_layout()
        canvas.draw_idle()
    
    # 添加图表交互功能
    canvas.mpl_connect('resize_event', on_resize)
    canvas.mpl_connect('scroll_event', on_scroll)
    canvas.mpl_connect('motion_notify_event', update_cursor)
    
    # 添加鼠标拖动功能
    def on_press(event):
        if event.inaxes != ax:
            return
        canvas.get_tk_widget().config(cursor="fleur")
        ax._pan_start = (event.x, event.y, event.xdata, event.ydata)
    
    def on_release(event):
        ax._pan_start = None
        canvas.get_tk_widget().config(cursor="")
        canvas.draw_idle()
    
    def on_motion(event):
        if not hasattr(ax, '_pan_start') or ax._pan_start is None:
            return
        if event.inaxes != ax:
            return
        
        start_x, start_y, x_data, y_data = ax._pan_start
        dx = event.x - start_x
        dy = event.y - start_y
        
        # 获取当前视图
        xlim = ax.get_xlim()
        ylim = ax.get_ylim()
        
        # 计算图表坐标系中的移动
        x_scale = (xlim[1] - xlim[0]) / canvas.get_tk_widget().winfo_width()
        y_scale = (ylim[1] - ylim[0]) / canvas.get_tk_widget().winfo_height()
        
        # 更新视图
        ax.set_xlim(xlim[0] - dx * x_scale, xlim[1] - dx * x_scale)
        ax.set_ylim(ylim[0] + dy * y_scale, ylim[1] + dy * y_scale)
        
        # 更新拖动起点
        ax._pan_start = (event.x, event.y, event.xdata, event.ydata)
        
        canvas.draw_idle()
    
    # 连接鼠标事件
    canvas.mpl_connect('button_press_event', on_press)
    canvas.mpl_connect('button_release_event', on_release)
    canvas.mpl_connect('motion_notify_event', on_motion)
    
    # 更新历史数据显示函数
    def display_history():
        try:
            ax.clear()
            end_date = df['DateTime'].max()
            start_date = max(df['DateTime'].min(), end_date - timedelta(days=60))
            hist_data = df[(df['DateTime'] >= start_date) & (df['DateTime'] <= end_date)]
            
            if len(hist_data) == 0:
                status_label.config(text="警告: 没有可用的历史数据")
                return
            
            # 创建双y轴图表
            ax2 = None
            has_water_level = 'water_level' in hist_data.columns and 'water_level_smooth' in hist_data.columns
            if has_water_level:
                ax2 = ax.twinx()
            
            # 绘制数据
            ax.plot(hist_data['DateTime'], hist_data['downstream_smooth'], 
                    label='一取水(下游)盐度', color='blue', linewidth=1.5)
            ax.plot(hist_data['DateTime'], hist_data['upstream_smooth'], 
                    label='青龙港(上游)盐度', color='purple', linewidth=1.5, alpha=0.7)
            
            # 设置边界,确保有一致的视图
            y_min = min(hist_data['downstream_smooth'].min(), hist_data['upstream_smooth'].min()) * 0.9
            y_max = max(hist_data['downstream_smooth'].max(), hist_data['upstream_smooth'].max()) * 1.1
            ax.set_ylim(y_min, y_max)
            
            # 如果有水位数据,在第二个y轴上绘制
            if ax2 is not None and has_water_level:
                try:
                    # 检查水位数据是否有足够的非NaN值
                    valid_water_level = hist_data['water_level_smooth'].dropna()
                    if len(valid_water_level) > 10:  # 至少有10个有效值
                        ax2.plot(hist_data['DateTime'], hist_data['water_level_smooth'], 
                                label='长江水位', color='green', linewidth=1.5, linestyle='--')
                        ax2.set_ylabel('水位 (m)', color='green')
                        ax2.tick_params(axis='y', labelcolor='green')
                        
                        # 创建组合图例
                        lines1, labels1 = ax.get_legend_handles_labels()
                        lines2, labels2 = ax2.get_legend_handles_labels()
                        ax.legend(lines1 + lines2, labels1 + labels2, loc='best')
                    else:
                        print("水位数据有效值不足,跳过水位图")
                        ax.legend(loc='best')
                except Exception as e:
                    print(f"绘制水位数据时出错: {e}")
                    ax.legend(loc='best')
            else:
                ax.legend(loc='best')
            
            # 设置标签和标题
            ax.set_xlabel('日期')
            ax.set_ylabel('盐度')
            ax.set_title('历史数据对比')
            
            # 使用紧凑布局并绘制
            fig.tight_layout()
            
            # 使用多种方法确保图像显示
            plt.close(fig)  # 关闭旧的
            fig.canvas.draw()
            fig.canvas.flush_events()
            plt.draw()
            
        except Exception as e:
            status_label.config(text=f"显示历史数据时出错: {str(e)}")
            import traceback
            traceback.print_exc()
 
    display_history()
    root.mainloop()
 
 
def resample_to_hourly(df):
    """
    将分钟级数据重采样为小时级数据,计算每小时的平均值
    """
    try:
        # 确保DateTime是索引
        if 'DateTime' in df.columns:
            df = df.set_index('DateTime')
        
        # 获取所有数值列
        numeric_columns = df.select_dtypes(include=[np.number]).columns.tolist()
        
        # 按小时重采样,计算平均值
        hourly_df = df[numeric_columns].resample('H').mean()
        
        # 重置索引,将DateTime作为列
        hourly_df = hourly_df.reset_index()
        
        print(f"数据已从分钟级重采样为小时级,原始数据行数: {len(df)},重采样后行数: {len(hourly_df)}")
        return hourly_df
        
    except Exception as e:
        print(f"重采样数据异常: {e}")
        return df
 
 
 
# -------------------------------
# 主程序入口:加载数据、添加特征、生成延迟特征后启动GUI
# -------------------------------
def save_processed_data(df, filename='processed_data.pkl'):
    try:
        df.to_pickle(filename)
        print(f"已保存处理后的数据到 {filename}")
        return True
    except Exception as e:
        print(f"保存数据失败: {e}")
        return False
 
def load_processed_data(filename='processed_data.pkl'):
    try:
        if os.path.exists(filename):
            df = pd.read_pickle(filename)
            print(f"已从 {filename} 加载处理后的数据")
            return df
        else:
            print(f"找不到处理后的数据文件 {filename}")
            return None
    except Exception as e:
        print(f"加载数据失败: {e}")
        return None
 
# 删除旧的处理数据(如果存在),以应用修复后的代码
if os.path.exists('processed_data.pkl'):
    try:
        os.remove('processed_data.pkl')
        print("已删除旧的处理数据缓存,将使用修复后的代码重新处理数据")
    except Exception as e:
        print(f"删除缓存文件失败: {e}")
 
# 删除旧的模型文件(如果存在)
if os.path.exists('salinity_model.pkl'):
    try:
        os.remove('salinity_model.pkl')
        print("已删除旧的模型文件,将重新训练模型")
    except Exception as e:
        print(f"删除模型文件失败: {e}")
 
# 尝试加载处理后的数据,如果不存在则重新处理
processed_data = load_processed_data()
if processed_data is not None:
    df = processed_data
else:
    # 添加长江液位数据作为参数
    df = load_data('青龙港1.csv', '一取水.csv', '长江液位.csv', '大通流量.csv')
    if df is not None:
        # 添加时间特征
        df['hour'] = df['DateTime'].dt.hour
        df['weekday'] = df['DateTime'].dt.dayofweek
        df['month'] = df['DateTime'].dt.month
        
        # 添加农历特征
        df = add_lunar_features(df)
        
        # 添加延迟特征上游到下游3-5天,暂时每12小时为一个节点,根据效果后续再调整
        # delay_hours = [1,2,3,4,6,12,24,36,48,60,72,84,96,108,120]
        delay_hours = [72,84,96,108,120]  
        df = batch_create_delay_features(df, delay_hours)
        
        # 添加统计特征
        df['mean_1d_up'] = df['upstream_smooth'].rolling(window=24, min_periods=1).mean()
        df['mean_3d_up'] = df['upstream_smooth'].rolling(window=72, min_periods=1).mean()
        df['std_1d_up'] = df['upstream_smooth'].rolling(window=24, min_periods=1).std()
        df['max_1d_up'] = df['upstream_smooth'].rolling(window=24, min_periods=1).max()
        df['min_1d_up'] = df['upstream_smooth'].rolling(window=24, min_periods=1).min()
        
        df['mean_1d_down'] = df['downstream_smooth'].rolling(window=24, min_periods=1).mean()
        df['mean_3d_down'] = df['downstream_smooth'].rolling(window=72, min_periods=1).mean()
        df['std_1d_down'] = df['downstream_smooth'].rolling(window=24, min_periods=1).std()
        df['max_1d_down'] = df['downstream_smooth'].rolling(window=24, min_periods=1).max()
        df['min_1d_down'] = df['downstream_smooth'].rolling(window=24, min_periods=1).min()
        
        # 添加水位统计特征(如果水位数据存在)
        if 'water_level' in df.columns:
            # 首先创建水位平滑特征
            if 'water_level_smooth' not in df.columns:
                df['water_level_smooth'] = df['water_level'].rolling(window=24, min_periods=1, center=True).mean()
                df['water_level_smooth'] = df['water_level_smooth'].fillna(df['water_level'])
            
            # 添加水位统计特征
            df['mean_1d_water_level'] = df['water_level_smooth'].rolling(window=24, min_periods=1).mean()
            df['mean_3d_water_level'] = df['water_level_smooth'].rolling(window=72, min_periods=1).mean()
            df['std_1d_water_level'] = df['water_level_smooth'].rolling(window=24, min_periods=1).std()
            df['max_1d_water_level'] = df['water_level_smooth'].rolling(window=24, min_periods=1).max()
            df['min_1d_water_level'] = df['water_level_smooth'].rolling(window=24, min_periods=1).min()
            
            # 计算水位变化率
            df['water_level_change_1h'] = df['water_level_smooth'].diff()
            df['water_level_change_24h'] = df['water_level_smooth'].diff(24)
            
            # 计算水位与盐度的相关特征
            df['water_level_sal_ratio'] = df['water_level_smooth'] / df['downstream_smooth']
            
            print("水位特征已添加")
        
        # 添加其他特征
        df = generate_features(df)
        
        # 将数据重采样为小时级
        df = resample_to_hourly(df)
        
        # 保存处理后的数据
        df.to_csv('merged_data_hour.csv', index=False)
        print(f"Merged data saved to 'merged_data_hour.csv' successfully")
        save_processed_data(df)
    
if df is not None:
    run_gui()
else:
    print("数据加载失败,无法运行预测。")