# xgboost修改版本
|
import os
|
import pickle
|
import pandas as pd
|
import numpy as np
|
from numpy.lib.stride_tricks import sliding_window_view
|
import tkinter as tk
|
import tkinter.font as tkfont
|
from tkinter import ttk
|
from datetime import timedelta
|
from time import time
|
import matplotlib.pyplot as plt
|
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg, NavigationToolbar2Tk
|
from xgboost import XGBRegressor
|
from lunardate import LunarDate
|
from sklearn.model_selection import train_test_split
|
from sklearn.metrics import mean_squared_error, mean_absolute_error
|
from sklearn.preprocessing import StandardScaler # 添加StandardScaler
|
from sklearn.ensemble import RandomForestRegressor # 添加RandomForest作为备选模型
|
from xgboost import XGBRFRegressor # 添加XGBoost的随机森林变种
|
import matplotlib
|
from scipy.signal import savgol_filter
|
import matplotlib.dates as mdates
|
|
# 配置 matplotlib 中文显示
|
matplotlib.rcParams['font.sans-serif'] = ['SimHei', 'Microsoft YaHei', 'SimSun', 'Arial Unicode MS']
|
matplotlib.rcParams['axes.unicode_minus'] = False
|
matplotlib.rcParams['font.family'] = 'sans-serif'
|
|
# 全局缓存变量及特征名称
|
cached_model = None
|
last_training_time = None
|
feature_columns = None
|
current_view = {'xlim': None, 'ylim': None} # 用于存储当前图表视图
|
prediction_mode = "青龙港-陈行" # 默认预测模式
|
current_df = None # 当前使用的数据集
|
|
|
|
# 定义改进的盐度数据异常过滤方法
|
def filter_salinity_anomalies(df, threshold_ratio=0.5, window_size=5, max_days=1):
|
# 复制数据,避免修改原始数据
|
filtered_df = df.copy()
|
|
# 确保能访问到日期信息(由于日期已设置为索引)
|
values = filtered_df['Value'].values
|
dates = filtered_df.index.values # 从索引获取日期
|
|
# 1. 首先处理单个异常点
|
i = 1
|
while i < len(values):
|
# 检查当前值是否小于前一个值的threshold_ratio
|
if values[i] < values[i-1] * threshold_ratio:
|
baseline = values[i-1] # 基准值为上一个正常的盐度值
|
anomaly_start = i
|
j = i
|
|
# 向后查找,直到找到一个不小于基准值threshold_ratio的点
|
# 或者直到时间区间超过max_days天
|
anomaly_start_date = dates[anomaly_start]
|
max_date = anomaly_start_date + np.timedelta64(int(max_days*24), 'h')
|
|
while j < len(values) and values[j] < baseline * threshold_ratio and dates[j] <= max_date:
|
j += 1
|
|
anomaly_end = j - 1 # 异常区间的结束位置
|
|
# 处理异常区间
|
if anomaly_end - anomaly_start < 3: # 短区间用线性插值
|
if j < len(values):
|
# 如果异常区间后还有数据点,使用线性插值
|
for k in range(anomaly_start, anomaly_end + 1):
|
# 线性插值:在基准值和异常区间后第一个正常值之间进行平滑过渡
|
ratio = (k - anomaly_start + 1) / (anomaly_end - anomaly_start + 2)
|
values[k] = baseline * (1 - ratio) + values[j] * ratio
|
# 确保平滑后的值不低于基准的threshold_ratio
|
values[k] = max(values[k], baseline * threshold_ratio)
|
else:
|
# 如果异常区间到数据末尾,使用基准值的threshold_ratio填充
|
for k in range(anomaly_start, anomaly_end + 1):
|
values[k] = baseline * threshold_ratio
|
else: # 长区间使用更简单的平滑方式,避免插值错误
|
# 使用线性插值来避免非有限值问题
|
if j < len(values):
|
end_val = values[j]
|
# 为每个点创建线性插值
|
for k in range(anomaly_start, anomaly_end + 1):
|
fraction = (k - anomaly_start) / (j - anomaly_start) if j > anomaly_start else 0
|
interpolated = baseline * (1 - fraction) + end_val * fraction
|
values[k] = max(interpolated, baseline * threshold_ratio)
|
else:
|
# 如果异常区间到数据末尾,使用基准值的threshold_ratio填充
|
for k in range(anomaly_start, anomaly_end + 1):
|
values[k] = baseline * threshold_ratio
|
|
i = j # 跳过已处理的异常区间
|
else:
|
i += 1
|
|
# 2. 应用Savitzky-Golay滤波进行整体平滑
|
if len(values) > window_size:
|
# 确保window_size是奇数
|
if window_size % 2 == 0:
|
window_size += 1
|
|
# 应用Savitzky-Golay滤波
|
try:
|
# 对数据进行平滑,但保留原始的特性
|
smoothed = savgol_filter(values, window_size, 3)
|
|
# 确保平滑后的数据不会小于相邻点的threshold_ratio
|
for i in range(1, len(smoothed)):
|
smoothed[i] = max(smoothed[i], smoothed[i-1] * threshold_ratio)
|
|
values = smoothed
|
except Exception as e:
|
print(f"Savitzky-Golay滤波应用失败: {e}")
|
|
filtered_df['Value'] = values
|
return filtered_df
|
|
|
|
|
# 数据加载与预处理函数
|
# -------------------------------
|
def load_data(upstream_file, downstream_file, river_level_file=None, flow_file=None, source_name="青龙港"):
|
"""
|
加载所有相关数据并进行数据质量处理
|
"""
|
try:
|
# 读取上游和下游数据
|
upstream_df = pd.read_csv(upstream_file)
|
downstream_df = pd.read_csv(downstream_file)
|
except FileNotFoundError:
|
print("文件未找到,请检查路径")
|
return None
|
|
# 确保列名一致
|
upstream_df.columns = ['DateTime', 'TagName', 'Value']
|
downstream_df.columns = ['DateTime', 'TagName', 'Value']
|
|
# 转换时间格式并设置为索引
|
upstream_df['DateTime'] = pd.to_datetime(upstream_df['DateTime'])
|
downstream_df['DateTime'] = pd.to_datetime(downstream_df['DateTime'])
|
|
# 设置DateTime为索引
|
upstream_df.set_index('DateTime', inplace=True)
|
downstream_df.set_index('DateTime', inplace=True)
|
|
# 应用盐度数据异常过滤方法s
|
upstream_df = filter_salinity_anomalies(upstream_df, threshold_ratio=0.5, window_size=7, max_days=1)
|
downstream_df = filter_salinity_anomalies(downstream_df, threshold_ratio=0.5, window_size=7, max_days=1)
|
|
# 处理低盐度值(小于5)
|
# 不直接过滤,而是标记为NaN并使用插值方法处理
|
for df in [upstream_df, downstream_df]:
|
# 标记低盐度值为NaN
|
low_salinity_mask = df['Value'] < 5
|
if low_salinity_mask.any():
|
print(f"发现{low_salinity_mask.sum()}个低盐度值(<5),将使用插值处理")
|
df.loc[low_salinity_mask, 'Value'] = np.nan
|
|
# 对短期缺失使用线性插值
|
df['Value'] = df['Value'].interpolate(method='linear', limit=4)
|
|
# 对较长期缺失使用基于时间的插值
|
df['Value'] = df['Value'].interpolate(method='time', limit=24)
|
|
# 对剩余缺失使用前向和后向填充
|
df['Value'] = df['Value'].fillna(method='ffill').fillna(method='bfill')
|
|
# 使用更小的窗口进行平滑处理
|
df['Value'] = df['Value'].rolling(window=6, center=True, min_periods=1).median()
|
|
|
# 重命名Value列
|
upstream_df = upstream_df.rename(columns={'Value': 'upstream'})[['upstream']]
|
downstream_df = downstream_df.rename(columns={'Value': 'downstream'})[['downstream']]
|
|
# 合并数据
|
merged_df = pd.merge(upstream_df, downstream_df, left_index=True, right_index=True, how='inner')
|
|
# 记录数据源名称
|
merged_df['source_name'] = source_name
|
|
# 加载长江水位数据
|
if river_level_file:
|
try:
|
river_level_df = pd.read_csv(river_level_file)
|
print(f"成功读取水位数据文件: {river_level_file}")
|
|
# 确保列名一致
|
if len(river_level_df.columns) >= 3:
|
river_level_df.columns = ['DateTime', 'TagName', 'Value']
|
elif len(river_level_df.columns) == 2:
|
river_level_df.columns = ['DateTime', 'Value']
|
river_level_df['TagName'] = 'water_level'
|
|
# 数据处理
|
river_level_df['DateTime'] = pd.to_datetime(river_level_df['DateTime'])
|
river_level_df.set_index('DateTime', inplace=True)
|
river_level_df['Value'] = pd.to_numeric(river_level_df['Value'], errors='coerce')
|
|
# 使用IQR方法处理异常值
|
Q1 = river_level_df['Value'].quantile(0.25)
|
Q3 = river_level_df['Value'].quantile(0.75)
|
IQR = Q3 - Q1
|
lower_bound = Q1 - 1.5 * IQR
|
upper_bound = Q3 + 1.5 * IQR
|
river_level_df.loc[river_level_df['Value'] < lower_bound, 'Value'] = lower_bound
|
river_level_df.loc[river_level_df['Value'] > upper_bound, 'Value'] = upper_bound
|
|
# 重命名并保留需要的列
|
river_level_df = river_level_df.rename(columns={'Value': 'water_level'})[['water_level']]
|
|
# 合并到主数据框
|
merged_df = pd.merge(merged_df, river_level_df, left_index=True, right_index=True, how='left')
|
|
# 对水位数据进行插值处理
|
merged_df['water_level'] = merged_df['water_level'].interpolate(method='time', limit=24)
|
merged_df['water_level'] = merged_df['water_level'].fillna(method='ffill').fillna(method='bfill')
|
|
# 创建平滑的水位数据
|
merged_df['water_level_smooth'] = merged_df['water_level'].rolling(window=24, min_periods=1, center=True).mean()
|
|
# 添加水位趋势特征
|
merged_df['water_level_trend_1h'] = merged_df['water_level_smooth'].diff(1)
|
merged_df['water_level_trend_24h'] = merged_df['water_level_smooth'].diff(24)
|
|
print(f"水位数据加载成功,范围: {merged_df['water_level'].min()} - {merged_df['water_level'].max()}")
|
except Exception as e:
|
print(f"水位数据加载失败: {str(e)}")
|
|
# 加载大通流量数据
|
if flow_file:
|
try:
|
flow_df = pd.read_csv(flow_file)
|
print(f"成功读取流量数据文件: {flow_file}")
|
|
# 确保列名一致
|
if len(flow_df.columns) >= 3:
|
flow_df.columns = ['DateTime', 'TagName', 'Value']
|
elif len(flow_df.columns) == 2:
|
flow_df.columns = ['DateTime', 'Value']
|
flow_df['TagName'] = 'flow'
|
|
# 数据处理
|
flow_df['DateTime'] = pd.to_datetime(flow_df['DateTime'])
|
flow_df.set_index('DateTime', inplace=True)
|
flow_df['Value'] = pd.to_numeric(flow_df['Value'], errors='coerce')
|
|
# 使用IQR方法处理异常值
|
Q1 = flow_df['Value'].quantile(0.25)
|
Q3 = flow_df['Value'].quantile(0.75)
|
IQR = Q3 - Q1
|
lower_bound = Q1 - 1.5 * IQR
|
upper_bound = Q3 + 1.5 * IQR
|
flow_df.loc[flow_df['Value'] < lower_bound, 'Value'] = lower_bound
|
flow_df.loc[flow_df['Value'] > upper_bound, 'Value'] = upper_bound
|
|
# 重命名并保留需要的列
|
flow_df = flow_df.rename(columns={'Value': 'flow'})[['flow']]
|
|
# 合并到主数据框
|
merged_df = pd.merge(merged_df, flow_df, left_index=True, right_index=True, how='left')
|
|
# 对流量数据进行插值处理
|
merged_df['flow'] = merged_df['flow'].interpolate(method='time', limit=24)
|
merged_df['flow'] = merged_df['flow'].fillna(method='ffill').fillna(method='bfill')
|
|
# 创建平滑的流量数据
|
merged_df['flow_smooth'] = merged_df['flow'].rolling(window=24, min_periods=1, center=True).mean()
|
|
# 添加流量趋势特征
|
merged_df['flow_trend_1h'] = merged_df['flow_smooth'].diff(1)
|
merged_df['flow_trend_24h'] = merged_df['flow_smooth'].diff(24)
|
|
# 添加流量统计特征
|
merged_df['mean_1d_flow'] = merged_df['flow_smooth'].rolling(window=24, min_periods=1).mean()
|
merged_df['mean_3d_flow'] = merged_df['flow_smooth'].rolling(window=72, min_periods=1).mean()
|
merged_df['std_1d_flow'] = merged_df['flow_smooth'].rolling(window=24, min_periods=1).std()
|
|
# 添加流量变化特征
|
merged_df['flow_change_1h'] = merged_df['flow_smooth'].diff(1)
|
merged_df['flow_change_24h'] = merged_df['flow_smooth'].diff(24)
|
|
print(f"流量数据加载成功,范围: {merged_df['flow'].min()} - {merged_df['flow'].max()} m³/s")
|
except Exception as e:
|
print(f"流量数据加载失败: {str(e)}")
|
|
# 对盐度数据进行插值和平滑处理
|
merged_df['upstream'] = merged_df['upstream'].interpolate(method='time', limit=24)
|
merged_df['downstream'] = merged_df['downstream'].interpolate(method='time', limit=24)
|
|
# 使用前向后向填充处理剩余的NaN值
|
merged_df['upstream'] = merged_df['upstream'].ffill().bfill()
|
merged_df['downstream'] = merged_df['downstream'].ffill().bfill()
|
|
# 创建平滑的盐度数据
|
merged_df['upstream_smooth'] = merged_df['upstream'].rolling(window=24, min_periods=1, center=True).mean()
|
merged_df['downstream_smooth'] = merged_df['downstream'].rolling(window=24, min_periods=1, center=True).mean()
|
|
# 添加趋势特征
|
merged_df['upstream_trend_1h'] = merged_df['upstream_smooth'].diff(1)
|
merged_df['upstream_trend_24h'] = merged_df['upstream_smooth'].diff(24)
|
merged_df['downstream_trend_1h'] = merged_df['downstream_smooth'].diff(1)
|
merged_df['downstream_trend_24h'] = merged_df['downstream_smooth'].diff(24)
|
|
# 填充NaN值
|
merged_df['upstream_trend_1h'] = merged_df['upstream_trend_1h'].fillna(0)
|
merged_df['upstream_trend_24h'] = merged_df['upstream_trend_24h'].fillna(0)
|
merged_df['downstream_trend_1h'] = merged_df['downstream_trend_1h'].fillna(0)
|
merged_df['downstream_trend_24h'] = merged_df['downstream_trend_24h'].fillna(0)
|
|
# 对低盐度部分使用更大的窗口进行平滑
|
low_sal_mask = merged_df['upstream'] < 50
|
if low_sal_mask.any():
|
merged_df.loc[low_sal_mask, 'upstream_smooth'] = merged_df.loc[low_sal_mask, 'upstream']\
|
.rolling(window=48, min_periods=1, center=True).mean()
|
|
# 数据验证和统计
|
print("\n数据质量统计:")
|
print(f"总数据量: {len(merged_df)}")
|
print(f"上游({source_name})盐度范围: {merged_df['upstream_smooth'].min():.2f} - {merged_df['upstream_smooth'].max():.2f}")
|
print(f"下游(陈行)盐度范围: {merged_df['downstream_smooth'].min():.2f} - {merged_df['downstream_smooth'].max():.2f}")
|
|
if 'water_level' in merged_df.columns:
|
print(f"水位范围: {merged_df['water_level_smooth'].min():.2f} - {merged_df['water_level_smooth'].max():.2f}")
|
print(f"水位缺失比例: {merged_df['water_level_smooth'].isna().mean()*100:.2f}%")
|
|
if 'flow' in merged_df.columns:
|
print(f"流量范围: {merged_df['flow_smooth'].min():.2f} - {merged_df['flow_smooth'].max():.2f} m³/s")
|
print(f"流量缺失比例: {merged_df['flow_smooth'].isna().mean()*100:.2f}%")
|
|
# 重置索引,将DateTime作为列
|
merged_df = merged_df.reset_index()
|
|
return merged_df
|
|
def resample_to_hourly(df):
|
"""
|
将分钟级数据重采样为小时级数据,计算每小时的平均值
|
"""
|
try:
|
# 确保DateTime是索引
|
if 'DateTime' in df.columns:
|
df = df.set_index('DateTime')
|
|
# 获取所有数值列
|
numeric_columns = df.select_dtypes(include=[np.number]).columns.tolist()
|
|
# 按小时重采样,计算平均值
|
hourly_df = df[numeric_columns].resample('H').mean()
|
|
# 重置索引,将DateTime作为列
|
hourly_df = hourly_df.reset_index()
|
|
print(f"数据已从分钟级重采样为小时级,原始数据行数: {len(df)},重采样后行数: {len(hourly_df)}")
|
return hourly_df
|
|
except Exception as e:
|
print(f"重采样数据异常: {e}")
|
return df
|
|
|
|
|
# # 测试
|
# df = load_data('yuce_data/青龙港1.csv', 'yuce_data/一取水.csv')
|
# # 将数据重采样为小时级
|
# df = resample_to_hourly(df)
|
# df.to_csv('merged_data_hour.csv', index=False)
|
# print(f"Merged data saved to 'merged_data_hour.csv' successfully")
|
|
# # 绘制盐度随时间变化图
|
# plt.figure(figsize=(12, 6))
|
# plt.plot(df['DateTime'], df['upstream_smooth'], label='上游盐度', color='blue')
|
# plt.plot(df['DateTime'], df['downstream_smooth'], label='下游盐度', color='red')
|
# plt.axhline(y=250, color='red', linestyle='--', alpha=0.7, linewidth=1.5, label='盐度警戒线 (250)')
|
# plt.xlabel('时间')
|
# plt.ylabel('盐度')
|
# plt.title('盐度随时间变化图')
|
# plt.legend()
|
# plt.grid(True)
|
# plt.tight_layout()
|
# plt.savefig('salinity_time_series.png', dpi=300)
|
# plt.show()
|
|
# -------------------------------
|
# 添加农历(潮汐)特征
|
# -------------------------------
|
def add_lunar_features(df):
|
lunar_day, lunar_phase_sin, lunar_phase_cos, is_high_tide = [], [], [], []
|
# 新增潮汐权重特征
|
tide_weight, tide_period_type = [], []
|
|
for dt in df['DateTime']:
|
ld = LunarDate.fromSolarDate(dt.year, dt.month, dt.day)
|
lunar_day.append(ld.day)
|
|
# 基础潮汐周期特征(正弦和余弦变换)
|
lunar_phase_sin.append(np.sin(2 * np.pi * ld.day / 15))
|
lunar_phase_cos.append(np.cos(2 * np.pi * ld.day / 15))
|
|
# 大潮期(农历初一至初五及十六至二十)标记为1,其他为0
|
is_high = 1 if (ld.day <= 5 or (ld.day >= 16 and ld.day <= 20)) else 0
|
is_high_tide.append(is_high)
|
|
# 增加潮汐周期类型
|
# 1: 大活汛期(农历初一至初五及十六至二十)
|
# 2: 死汛期前段(农历初六至十五)
|
# 3: 死汛期后段(农历二十一至月末)
|
if ld.day <= 5 or (ld.day >= 16 and ld.day <= 20):
|
period_type = 1 # 大活汛期
|
elif ld.day >= 6 and ld.day <= 15:
|
period_type = 2 # 死汛期前段
|
else:
|
period_type = 3 # 死汛期后段
|
tide_period_type.append(period_type)
|
|
# 根据潮汐周期类型和具体农历日分配权重
|
# 大活汛期权重较高,死汛期权重较低
|
if period_type == 1: # 大活汛期
|
# 初一/十六权重最高,递减至初五/二十
|
if ld.day <= 5:
|
weight = 1.0 - (ld.day - 1) * 0.1 # 1.0, 0.9, 0.8, 0.7, 0.6
|
else:
|
weight = 1.0 - (ld.day - 16) * 0.1 # 1.0, 0.9, 0.8, 0.7, 0.6
|
elif period_type == 2: # 死汛期前段
|
# 权重稍低且平缓变化
|
weight = 0.5 - (ld.day - 6) * 0.02 # 从0.5慢慢降到0.3
|
else: # 死汛期后段
|
# 权重稍低且平缓变化
|
weight = 0.5 - (ld.day - 21) * 0.02 # 从0.5慢慢降到0.3
|
|
tide_weight.append(weight)
|
|
# 添加原有特征
|
df['lunar_day'] = lunar_day
|
df['lunar_phase_sin'] = lunar_phase_sin
|
df['lunar_phase_cos'] = lunar_phase_cos
|
df['is_high_tide'] = is_high_tide
|
|
# 添加新的潮汐特征
|
df['tide_weight'] = tide_weight
|
df['tide_period_type'] = tide_period_type
|
|
# 添加潮汐45分钟延迟特征
|
# 每天潮汐时间后延约45分钟,对应角度变化约11.25度(360度/24小时*0.75小时)
|
hour_values = df['DateTime'].dt.hour + df['DateTime'].dt.minute / 60.0
|
|
# 计算潮汐时间延迟的周期性特征
|
# 将lunar_day转换为numpy数组进行计算
|
lunar_day_array = np.array(lunar_day)
|
|
# 基于农历日与时间的组合,表示具体某天某时的潮汐状态
|
df['tide_time_sin'] = np.sin(2 * np.pi * (hour_values / 12 + lunar_day_array * 0.75 / 12))
|
df['tide_time_cos'] = np.cos(2 * np.pi * (hour_values / 12 + lunar_day_array * 0.75 / 12))
|
|
# 添加潮汐强度与盐度相关性的特征
|
# 组合潮汐权重与时间特征
|
df['tide_salt_factor'] = df['tide_weight'] * (1 + 0.5 * np.sin(2 * np.pi * hour_values / 12))
|
|
return df
|
|
|
# -------------------------------
|
# 生成延迟特征(向量化)
|
# -------------------------------
|
def batch_create_delay_features(df, delay_hours):
|
"""
|
为数据框中的特定列创建延迟特征
|
"""
|
# 定义需要创建延迟特征的列
|
target_columns = ['upstream_smooth']
|
|
|
# target_columns = ['upstream_smooth', 'downstream_smooth']
|
# # 如果存在水位数据列,也为它创建延迟特征 暂时不使用
|
# if 'water_level_smooth' in df.columns:
|
# target_columns.append('water_level_smooth')
|
# elif 'water_level' in df.columns:
|
# print("注意: 水位平滑列不存在,使用原始水位列创建延迟特征")
|
# # 创建水位平滑列
|
# df['water_level_smooth'] = df['water_level'].rolling(window=24, min_periods=1, center=True).mean()
|
# df['water_level_smooth'] = df['water_level_smooth'].fillna(df['water_level'])
|
# target_columns.append('water_level_smooth')
|
|
# 创建延迟特征
|
for column in target_columns:
|
if column in df.columns:
|
for delay in delay_hours:
|
df[f'{column.split("_")[0]}_delay_{delay}h'] = df[column].shift(delay)
|
else:
|
print(f"警告: 列 {column} 不存在,跳过创建延迟特征")
|
|
return df
|
|
|
# 生成其他特征
|
def generate_features(df):
|
"""
|
生成其他特征,包括历史数据、时间特征、统计特征和外部特征,并将这些特征添加到原始DataFrame中
|
"""
|
try:
|
# 创建平滑的盐度数据
|
df['upstream_smooth'] = df['upstream'].rolling(window=24, min_periods=1, center=True).mean()
|
df['downstream_smooth'] = df['downstream'].rolling(window=24, min_periods=1, center=True).mean()
|
|
# 时间特征
|
df['hour'] = df['DateTime'].dt.hour
|
df['weekday'] = df['DateTime'].dt.dayofweek
|
df['month'] = df['DateTime'].dt.month
|
|
# 时间特征的sin和cos转换
|
df['hour_sin'] = np.sin(2 * np.pi * df['hour'] / 24)
|
df['hour_cos'] = np.cos(2 * np.pi * df['hour'] / 24)
|
df['weekday_sin'] = np.sin(2 * np.pi * df['weekday'] / 7)
|
df['weekday_cos'] = np.cos(2 * np.pi * df['weekday'] / 7)
|
df['month_sin'] = np.sin(2 * np.pi * df['month'] / 12)
|
df['month_cos'] = np.cos(2 * np.pi * df['month'] / 12)
|
|
# 统计特征
|
df['mean_1d_up'] = df['upstream_smooth'].rolling(window=24, min_periods=1).mean()
|
df['mean_3d_up'] = df['upstream_smooth'].rolling(window=72, min_periods=1).mean()
|
df['std_1d_up'] = df['upstream_smooth'].rolling(window=24, min_periods=1).std()
|
|
df['mean_1d_down'] = df['downstream_smooth'].rolling(window=24, min_periods=1).mean()
|
df['mean_3d_down'] = df['downstream_smooth'].rolling(window=72, min_periods=1).mean()
|
df['std_1d_down'] = df['downstream_smooth'].rolling(window=24, min_periods=1).std()
|
|
# 趋势特征
|
df['trend_1h_up'] = df['upstream_smooth'].diff(1)
|
df['trend_3h_up'] = df['upstream_smooth'].diff(3)
|
df['trend_6h_up'] = df['upstream_smooth'].diff(6)
|
df['trend_12h_up'] = df['upstream_smooth'].diff(12)
|
df['trend_24h_up'] = df['upstream_smooth'].diff(24)
|
|
df['trend_1h_down'] = df['downstream_smooth'].diff(1)
|
df['trend_3h_down'] = df['downstream_smooth'].diff(3)
|
df['trend_6h_down'] = df['downstream_smooth'].diff(6)
|
df['trend_12h_down'] = df['downstream_smooth'].diff(12)
|
df['trend_24h_down'] = df['downstream_smooth'].diff(24)
|
|
# 外部特征(水位和流量)
|
if 'water_level_smooth' in df.columns:
|
df['water_level_trend_1h'] = df['water_level_smooth'].diff(1)
|
df['water_level_trend_24h'] = df['water_level_smooth'].diff(24)
|
df['mean_1d_water_level'] = df['water_level_smooth'].rolling(window=24, min_periods=1).mean()
|
df['mean_3d_water_level'] = df['water_level_smooth'].rolling(window=72, min_periods=1).mean()
|
df['std_1d_water_level'] = df['water_level_smooth'].rolling(window=24, min_periods=1).std()
|
|
if 'flow_smooth' in df.columns:
|
df['flow_trend_1h'] = df['flow_smooth'].diff(1)
|
df['flow_trend_24h'] = df['flow_smooth'].diff(24)
|
df['mean_1d_flow'] = df['flow_smooth'].rolling(window=24, min_periods=1).mean()
|
df['mean_3d_flow'] = df['flow_smooth'].rolling(window=72, min_periods=1).mean()
|
df['std_1d_flow'] = df['flow_smooth'].rolling(window=24, min_periods=1).std()
|
|
# 新增:增强短期连续性特征 - 为提高第一天预测准确性
|
# 最近几小时的细粒度盐度变化特征
|
for h in [1, 2, 3, 4, 6, 8, 12]:
|
# 分别计算上游和下游盐度的近期变化率
|
df[f'recent_{h}h_rate_down'] = (df['downstream_smooth'] - df['downstream_smooth'].shift(h)) / h
|
df[f'recent_{h}h_rate_up'] = (df['upstream_smooth'] - df['upstream_smooth'].shift(h)) / h
|
|
# 最近24小时的加权移动平均,赋予最近数据更高权重
|
weights_24h = np.linspace(0.1, 1.0, 24) # 线性递增权重
|
df['weighted_24h_down'] = df['downstream_smooth'].rolling(window=24).apply(
|
lambda x: np.sum(x * weights_24h[:len(x)]) / np.sum(weights_24h[:len(x)]), raw=True
|
)
|
df['weighted_24h_up'] = df['upstream_smooth'].rolling(window=24).apply(
|
lambda x: np.sum(x * weights_24h[:len(x)]) / np.sum(weights_24h[:len(x)]), raw=True
|
)
|
|
# 最近数小时的指数平滑特征
|
alpha = 0.3 # 平滑因子
|
df['exp_smooth_down'] = df['downstream_smooth'].ewm(alpha=alpha, adjust=False).mean()
|
df['exp_smooth_up'] = df['upstream_smooth'].ewm(alpha=alpha, adjust=False).mean()
|
|
# 最近变化趋势的稳定性/波动性特征
|
df['trend_stability_12h_down'] = df['trend_1h_down'].rolling(window=12).std() / df['downstream_smooth'].rolling(window=12).mean()
|
df['trend_stability_12h_up'] = df['trend_1h_up'].rolling(window=12).std() / df['upstream_smooth'].rolling(window=12).mean()
|
|
# 计算短期趋势的加速度(变化率的变化率)
|
df['trend_acceleration_down'] = df['trend_1h_down'].diff(1)
|
df['trend_acceleration_up'] = df['trend_1h_up'].diff(1)
|
|
return df
|
|
except Exception as e:
|
print(f"特征生成异常: {e}")
|
return df
|
|
|
|
# -------------------------------
|
# 主程序入口:加载数据、添加特征、生成延迟特征后启动GUI
|
# -------------------------------
|
def save_processed_data(df, filename='processed_data.pkl'):
|
try:
|
df.to_pickle(filename)
|
print(f"已保存处理后的数据到 {filename}")
|
return True
|
except Exception as e:
|
print(f"保存数据失败: {e}")
|
return False
|
|
def load_processed_data(filename='processed_data.pkl'):
|
try:
|
if os.path.exists(filename):
|
df = pd.read_pickle(filename)
|
print(f"已从 {filename} 加载处理后的数据")
|
return df
|
else:
|
print(f"找不到处理后的数据文件 {filename}")
|
return None
|
except Exception as e:
|
print(f"加载数据失败: {e}")
|
return None
|
|
def load_both_datasets():
|
"""加载两个数据源的数据集"""
|
global cached_model, last_training_time
|
|
# 删除旧的处理数据和模型文件,以应用修复后的代码
|
for file in ['processed_data_qinglong.pkl', 'processed_data_taicang.pkl',
|
'salinity_model_qinglong.pkl', 'salinity_model_taicang.pkl']:
|
if os.path.exists(file):
|
try:
|
os.remove(file)
|
print(f"已删除旧的文件: {file}")
|
except Exception as e:
|
print(f"删除文件失败: {file} - {e}")
|
|
# 加载青龙港-陈行数据集
|
qinglong_df = load_processed_data('processed_data_qinglong.pkl')
|
if qinglong_df is None:
|
# 创建新的数据集
|
print("正在处理青龙港-陈行数据集...")
|
qinglong_df = load_data('yuce_data\青龙港盐度1.csv', 'yuce_data\陈行第一取水口盐度.csv',
|
'yuce_data\长江液位.csv', 'yuce_data\大通流量.csv', source_name="青龙港")
|
|
# 将数据重采样为小时级
|
qinglong_df = resample_to_hourly(qinglong_df)
|
|
if qinglong_df is not None:
|
# 添加时间特征
|
qinglong_df['hour'] = qinglong_df['DateTime'].dt.hour
|
qinglong_df['weekday'] = qinglong_df['DateTime'].dt.dayofweek
|
qinglong_df['month'] = qinglong_df['DateTime'].dt.month
|
|
# 添加农历特征
|
qinglong_df = add_lunar_features(qinglong_df)
|
|
# 添加延迟特征 (青龙港-陈行: 3-7天)
|
delay_hours = [36,39,42,45,48,51,54,57,60,72,78,84,90,96,102,108,114,120,126,132,138,144,150,156,162,168]
|
qinglong_df = batch_create_delay_features(qinglong_df, delay_hours)
|
|
# 添加统计特征
|
qinglong_df = generate_features(qinglong_df)
|
|
|
# 保存处理后的数据
|
save_processed_data(qinglong_df, 'processed_data_qinglong.pkl')
|
print("青龙港-陈行数据集处理完成")
|
else:
|
print("已从缓存加载青龙港-陈行数据集")
|
|
# 加载太仓石化-陈行数据集
|
taicang_df = load_processed_data('processed_data_taicang.pkl')
|
if taicang_df is None:
|
# 创建新的数据集
|
print("正在处理太仓石化-陈行数据集...")
|
taicang_df = load_data('yuce_data\太仓石化盐度2.csv', 'yuce_data\陈行第一取水口盐度.csv',
|
'yuce_data\长江液位.csv', 'yuce_data\大通流量.csv', source_name="太仓石化")
|
|
# 将数据重采样为小时级
|
taicang_df = resample_to_hourly(taicang_df)
|
|
if taicang_df is not None:
|
# 添加时间特征
|
taicang_df['hour'] = taicang_df['DateTime'].dt.hour
|
taicang_df['weekday'] = taicang_df['DateTime'].dt.dayofweek
|
taicang_df['month'] = taicang_df['DateTime'].dt.month
|
|
# 添加农历特征
|
taicang_df = add_lunar_features(taicang_df)
|
|
# 添加延迟特征 (太仓石化-陈行: 1-3天)
|
delay_hours = [1,2,3,4,5,6,8,10,12,14,16,18,24,30,36,42,48,54,60,66,72]
|
taicang_df = batch_create_delay_features(taicang_df, delay_hours)
|
|
# 添加统计特征
|
taicang_df = generate_features(taicang_df)
|
|
|
# 保存处理后的数据
|
save_processed_data(taicang_df, 'processed_data_taicang.pkl')
|
print("太仓石化-陈行数据集处理完成")
|
else:
|
print("已从缓存加载太仓石化-陈行数据集")
|
|
return qinglong_df, taicang_df
|
|
|
# -------------------------------
|
# 模型训练与预测,展示验证准确度(RMSE, MAE)
|
# -------------------------------
|
def train_and_predict(df, start_time, force_retrain=False):
|
global cached_model, last_training_time, prediction_mode
|
|
# 根据当前预测模式选择模型缓存文件
|
if prediction_mode == "青龙港-陈行":
|
model_cache_file = 'salinity_model_qinglong.pkl'
|
scaler_cache_file = 'scaler_qinglong.pkl'
|
else: # 太仓石化-陈行
|
model_cache_file = 'salinity_model_taicang.pkl'
|
scaler_cache_file = 'scaler_taicang.pkl'
|
|
model_needs_training = True
|
scaler = None # 初始化特征缩放器
|
model_data = None # 初始化model_data变量
|
|
if os.path.exists(model_cache_file) and force_retrain:
|
try:
|
os.remove(model_cache_file)
|
if os.path.exists(scaler_cache_file):
|
os.remove(scaler_cache_file)
|
print("已删除旧模型缓存(强制重新训练)")
|
except Exception as e:
|
print("删除缓存异常:", e)
|
|
# 准备训练数据
|
train_df = df[df['DateTime'] < start_time].copy()
|
test_X, test_y = create_features_vectorized(train_df, look_back=7, forecast_horizon=1)
|
if test_X is None or test_y is None:
|
print("特征生成失败")
|
return None, None, None, None
|
|
current_feature_dim = test_X.shape[1] if len(test_X) > 0 else 0
|
print(f"当前特征维度: {current_feature_dim}")
|
|
# 检查缓存模型
|
cached_feature_dim = None
|
if not force_retrain and cached_model is not None and last_training_time is not None:
|
if last_training_time >= train_df['DateTime'].max():
|
try:
|
cached_feature_dim = cached_model['xgb'].n_features_in_
|
print(f"缓存模型特征维度: {cached_feature_dim}")
|
|
if cached_feature_dim == current_feature_dim:
|
model_needs_training = False
|
print(f"使用缓存模型,训练时间: {last_training_time}")
|
# 加载特征缩放器
|
if os.path.exists(scaler_cache_file):
|
with open(scaler_cache_file, 'rb') as f:
|
scaler = pickle.load(f)
|
print("从缓存加载特征缩放器")
|
else:
|
print(f"特征维度不匹配(缓存模型: {cached_feature_dim},当前: {current_feature_dim}),需要重新训练")
|
except Exception as e:
|
print(f"检查模型特征维度失败: {e}")
|
elif not force_retrain and os.path.exists(model_cache_file):
|
try:
|
with open(model_cache_file, 'rb') as f:
|
model_data = pickle.load(f)
|
cached_model = model_data['models']
|
last_training_time = model_data['training_time']
|
|
try:
|
cached_feature_dim = cached_model['xgb'].n_features_in_
|
print(f"文件缓存模型特征维度: {cached_feature_dim}")
|
if cached_feature_dim == current_feature_dim:
|
if last_training_time >= train_df['DateTime'].max():
|
model_needs_training = False
|
print(f"从文件加载模型,训练时间: {last_training_time}")
|
# 加载特征缩放器
|
if os.path.exists(scaler_cache_file):
|
with open(scaler_cache_file, 'rb') as f:
|
scaler = pickle.load(f)
|
print("从文件加载特征缩放器")
|
else:
|
print(f"训练时间不足,需要重新训练")
|
model_needs_training = True
|
else:
|
print(f"特征维度不匹配(文件模型: {cached_feature_dim},当前: {current_feature_dim}),需要重新训练")
|
except Exception as e:
|
print(f"检查模型特征维度失败: {e}")
|
model_needs_training = True
|
except Exception as e:
|
print("加载模型失败:", e)
|
model_needs_training = True
|
|
# 训练新模型
|
if model_needs_training:
|
print(f"开始训练新{prediction_mode}模型...")
|
if len(train_df) < 100:
|
print("训练数据不足")
|
return None, None, None, None
|
|
start_train = time()
|
X, y = create_features_vectorized(train_df, look_back=7, forecast_horizon=1)
|
if X is None or y is None or len(X) == 0 or len(y) == 0:
|
print("特征生成失败或样本不足")
|
return None, None, None, None
|
|
print(f"训练样本数量: {X.shape[0]}, 特征维度: {X.shape[1]}")
|
|
# 为特征生成名称(用于分析)
|
feature_names = generate_feature_names(train_df, X.shape[1])
|
|
# 特征归一化处理
|
scaler = StandardScaler()
|
X_scaled = scaler.fit_transform(X)
|
print("特征已归一化处理")
|
|
# 保存特征缩放器
|
with open(scaler_cache_file, 'wb') as f:
|
pickle.dump(scaler, f)
|
print(f"特征缩放器已保存至 {scaler_cache_file}")
|
|
# 分割训练集和验证集
|
X_train, X_val, y_train, y_val = train_test_split(X_scaled, y, test_size=0.15, random_state=42)
|
print(f"训练集: {X_train.shape[0]}样本, 验证集: {X_val.shape[0]}样本")
|
|
try:
|
# 训练多个模型
|
models = {}
|
predictions = {}
|
metrics = {}
|
|
# 1. 训练标准XGBoost回归模型
|
print("训练XGBoost模型...")
|
xgb_model = XGBRegressor(
|
n_estimators=300,
|
learning_rate=0.05,
|
max_depth=6,
|
min_child_weight=2,
|
subsample=0.8,
|
colsample_bytree=0.8,
|
gamma=0.1,
|
reg_alpha=0.1,
|
reg_lambda=1.0,
|
n_jobs=-1,
|
random_state=42,
|
early_stopping_rounds=20
|
)
|
xgb_model.fit(X_train, y_train, eval_set=[(X_val, y_val)], eval_metric='rmse', verbose=False)
|
models['xgb'] = xgb_model
|
|
# 在验证集上评估
|
xgb_preds = xgb_model.predict(X_val)
|
predictions['xgb'] = xgb_preds
|
xgb_rmse = np.sqrt(mean_squared_error(y_val, xgb_preds))
|
xgb_mae = mean_absolute_error(y_val, xgb_preds)
|
metrics['xgb'] = {'rmse': xgb_rmse, 'mae': xgb_mae}
|
print(f"XGBoost - RMSE: {xgb_rmse:.4f}, MAE: {xgb_mae:.4f}")
|
|
# 2. 训练XGBoost随机森林版本模型
|
print("训练XGBoost随机森林模型...")
|
xgbrf_model = XGBRFRegressor(
|
n_estimators=300,
|
max_depth=7,
|
subsample=0.8,
|
colsample_bytree=0.8,
|
reg_alpha=0.05,
|
reg_lambda=1.0,
|
n_jobs=-1,
|
random_state=42
|
)
|
xgbrf_model.fit(X_train, y_train)
|
models['xgbrf'] = xgbrf_model
|
|
# 在验证集上评估
|
xgbrf_preds = xgbrf_model.predict(X_val)
|
predictions['xgbrf'] = xgbrf_preds
|
xgbrf_rmse = np.sqrt(mean_squared_error(y_val, xgbrf_preds))
|
xgbrf_mae = mean_absolute_error(y_val, xgbrf_preds)
|
metrics['xgbrf'] = {'rmse': xgbrf_rmse, 'mae': xgbrf_mae}
|
print(f"XGBoost RF - RMSE: {xgbrf_rmse:.4f}, MAE: {xgbrf_mae:.4f}")
|
|
# 3. 训练随机森林模型
|
print("训练随机森林模型...")
|
rf_model = RandomForestRegressor(
|
n_estimators=200,
|
max_depth=10,
|
min_samples_split=5,
|
min_samples_leaf=2,
|
max_features='sqrt',
|
n_jobs=-1,
|
random_state=42
|
)
|
rf_model.fit(X_train, y_train)
|
models['rf'] = rf_model
|
|
# 在验证集上评估
|
rf_preds = rf_model.predict(X_val)
|
predictions['rf'] = rf_preds
|
rf_rmse = np.sqrt(mean_squared_error(y_val, rf_preds))
|
rf_mae = mean_absolute_error(y_val, rf_preds)
|
metrics['rf'] = {'rmse': rf_rmse, 'mae': rf_mae}
|
print(f"随机森林 - RMSE: {rf_rmse:.4f}, MAE: {rf_mae:.4f}")
|
|
# 计算加权融合权重(基于各模型的RMSE取倒数)
|
total_weight = 1/xgb_rmse + 1/xgbrf_rmse + 1/rf_rmse
|
weights = {
|
'xgb': 1/xgb_rmse / total_weight,
|
'xgbrf': 1/xgbrf_rmse / total_weight,
|
'rf': 1/rf_rmse / total_weight
|
}
|
print(f"模型权重: XGBoost={weights['xgb']:.2f}, XGBRF={weights['xgbrf']:.2f}, RF={weights['rf']:.2f}")
|
|
# 融合预测
|
ensemble_preds = weights['xgb'] * xgb_preds + weights['xgbrf'] * xgbrf_preds + weights['rf'] * rf_preds
|
ensemble_rmse = np.sqrt(mean_squared_error(y_val, ensemble_preds))
|
ensemble_mae = mean_absolute_error(y_val, ensemble_preds)
|
print(f"融合模型 - RMSE: {ensemble_rmse:.4f}, MAE: {ensemble_mae:.4f}")
|
|
# 分析特征重要性
|
feature_importance = xgb_model.feature_importances_
|
sorted_idx = np.argsort(feature_importance)[::-1]
|
print(f"\n{prediction_mode}模型 前15重要特征:")
|
for i in range(min(15, len(sorted_idx))):
|
print(f"{i+1}. {feature_names[sorted_idx[i]]}: {feature_importance[sorted_idx[i]]:.6f}")
|
|
# 保存所有模型和权重
|
cached_model = models
|
last_training_time = start_time
|
|
model_data = {
|
'models': models,
|
'weights': weights,
|
'training_time': last_training_time,
|
'feature_columns': feature_names,
|
'metrics': {
|
'xgb_rmse': xgb_rmse,
|
'xgb_mae': xgb_mae,
|
'ensemble_rmse': ensemble_rmse,
|
'ensemble_mae': ensemble_mae
|
},
|
'feature_dim': current_feature_dim
|
}
|
|
with open(model_cache_file, 'wb') as f:
|
pickle.dump(model_data, f)
|
|
print(f"{prediction_mode}模型训练完成,耗时: {time() - start_train:.2f}秒")
|
|
except Exception as e:
|
print(f"模型训练异常: {e}")
|
import traceback
|
traceback.print_exc()
|
return None, None, None, None
|
else:
|
models = cached_model
|
# 加载权重和指标
|
with open(model_cache_file, 'rb') as f:
|
model_data = pickle.load(f)
|
weights = model_data.get('weights', {'xgb': 0.6, 'xgbrf': 0.25, 'rf': 0.15})
|
|
# 预测部分
|
try:
|
if scaler is None and os.path.exists(scaler_cache_file):
|
with open(scaler_cache_file, 'rb') as f:
|
scaler = pickle.load(f)
|
print("预测前加载特征缩放器")
|
|
# 初始化预测结果
|
future_dates = [start_time + timedelta(days=i) for i in range(5)]
|
predictions = np.zeros(5)
|
|
# 创建预测特征
|
X_pred = []
|
for i in range(5):
|
current_date = future_dates[i]
|
features = generate_prediction_features(df, current_date, look_back=7)
|
if features is None:
|
print(f"生成预测特征失败: {current_date}")
|
return None, None, None, None
|
X_pred.append(features)
|
|
# 特征归一化
|
X_pred = np.array(X_pred)
|
if scaler is not None:
|
X_pred = scaler.transform(X_pred)
|
print("预测特征已归一化")
|
|
# 使用多模型预测
|
model_predictions = {}
|
for model_name, model in models.items():
|
model_predictions[model_name] = model.predict(X_pred)
|
|
# 模型融合
|
ensemble_predictions = np.zeros(len(future_dates))
|
for model_name, weight in weights.items():
|
ensemble_predictions += weight * model_predictions[model_name]
|
|
# 计算预测的置信区间
|
train_std = 10.0 # 默认误差估计
|
if model_data and 'metrics' in model_data and 'ensemble_rmse' in model_data['metrics']:
|
train_std = model_data['metrics']['ensemble_rmse']
|
|
prediction_intervals = np.array([
|
ensemble_predictions - 1.96 * train_std,
|
ensemble_predictions + 1.96 * train_std
|
])
|
|
# 打印各模型的预测结果
|
print("\n各模型预测结果:")
|
for date, xgb_pred, xgbrf_pred, rf_pred, ens_pred in zip(
|
future_dates,
|
model_predictions['xgb'],
|
model_predictions['xgbrf'],
|
model_predictions['rf'],
|
ensemble_predictions
|
):
|
print(f"{date.strftime('%Y-%m-%d')} - XGB: {xgb_pred:.2f}, XGBRF: {xgbrf_pred:.2f}, RF: {rf_pred:.2f}, 融合: {ens_pred:.2f}")
|
|
return future_dates, ensemble_predictions, models, prediction_intervals
|
|
except Exception as e:
|
print(f"预测过程异常: {e}")
|
import traceback
|
traceback.print_exc()
|
return None, None, None, None
|
|
# 添加特征名称生成函数
|
def generate_feature_names(df, feature_dim):
|
"""为特征矩阵生成可读的特征名称"""
|
feature_names = []
|
|
# 获取所有数值列
|
numeric_columns = df.select_dtypes(include=[np.number]).columns.tolist()
|
if 'DateTime' in numeric_columns:
|
numeric_columns.remove('DateTime')
|
|
# 为每个时间步和每个数值列创建特征名称
|
for i in range(7):
|
for col in numeric_columns:
|
feature_names.append(f'{col}_t{i}')
|
|
# 添加时间特征名称
|
feature_names.extend(['month', 'day', 'weekday'])
|
|
# 添加额外的统计特征名称(针对最后24小时的特征)
|
feature_names.extend([
|
'recent_downstream_mean',
|
'recent_downstream_std',
|
'recent_downstream_change',
|
'recent_downstream_rate'
|
])
|
|
# 确保特征名称数量与特征维度匹配
|
if len(feature_names) != feature_dim:
|
print(f"特征名称数量({len(feature_names)})与特征维度({feature_dim})不匹配")
|
# 使用自动生成的特征名称
|
feature_names = [f'feature_{i}' for i in range(feature_dim)]
|
|
return feature_names
|
|
# -------------------------------
|
# 获取模型准确度指标
|
# -------------------------------
|
def get_model_metrics():
|
"""获取保存在模型缓存中的准确度指标"""
|
global prediction_mode
|
|
# 根据当前预测模式选择模型缓存文件
|
if prediction_mode == "青龙港-陈行":
|
model_cache_file = 'salinity_model_qinglong.pkl'
|
else: # 太仓石化-陈行
|
model_cache_file = 'salinity_model_taicang.pkl'
|
|
if os.path.exists(model_cache_file):
|
try:
|
with open(model_cache_file, 'rb') as f:
|
model_data = pickle.load(f)
|
|
# 适配新的数据结构
|
if 'metrics' in model_data:
|
# 新版本数据结构
|
return {
|
'rmse': model_data['metrics'].get('ensemble_rmse', 0),
|
'mae': model_data['metrics'].get('ensemble_mae', 0)
|
}
|
elif 'rmse' in model_data and 'mae' in model_data:
|
# 旧版本数据结构
|
return {
|
'rmse': model_data.get('rmse', 0),
|
'mae': model_data.get('mae', 0)
|
}
|
else:
|
# 无效的数据结构
|
print("无效的模型指标数据结构")
|
return {'rmse': 0, 'mae': 0}
|
except Exception as e:
|
print(f"获取模型指标失败: {e}")
|
|
# 如果无法获取到指标,返回默认值
|
return {'rmse': 0, 'mae': 0}
|
|
def run_gui():
|
"""运行GUI界面"""
|
global qinglong_df, taicang_df
|
def configure_gui_fonts():
|
font_names = ['微软雅黑', 'Microsoft YaHei', 'SimSun', 'SimHei']
|
for font_name in font_names:
|
try:
|
default_font = tkfont.nametofont("TkDefaultFont")
|
default_font.configure(family=font_name)
|
text_font = tkfont.nametofont("TkTextFont")
|
text_font.configure(family=font_name)
|
fixed_font = tkfont.nametofont("TkFixedFont")
|
fixed_font.configure(family=font_name)
|
return True
|
except Exception as e:
|
continue
|
return False
|
|
def switch_prediction_mode():
|
global prediction_mode, current_df, df, cached_model, last_training_time
|
|
# 切换预测模式
|
if prediction_mode == "青龙港-陈行":
|
prediction_mode = "太仓石化-陈行"
|
current_df = taicang_df
|
switch_button.config(text="切换到青龙港-陈行")
|
else:
|
prediction_mode = "青龙港-陈行"
|
current_df = qinglong_df
|
switch_button.config(text="切换到太仓石化-陈行")
|
|
# 更新当前数据集
|
df = current_df
|
|
# 重置模型缓存
|
cached_model = None
|
last_training_time = None
|
|
# 更新标题
|
root.title(f"{prediction_mode}盐度预测系统")
|
|
# 更新界面信息
|
status_label.config(text=f"已切换到{prediction_mode}模式")
|
|
# 更新模型指标
|
model_metrics = get_model_metrics()
|
metrics_text = "模型准确度: 未知" if not model_metrics else f"模型准确度 - RMSE: {model_metrics['rmse']:.4f}, MAE: {model_metrics['mae']:.4f}"
|
metrics_label.config(text=metrics_text)
|
|
# 显示历史数据
|
display_history_data()
|
|
def show_feature_importance():
|
"""显示特征重要性窗口,显示XGBoost的特征重要性"""
|
try:
|
# 检查模型缓存文件
|
model_cache_file = 'salinity_model_qinglong.pkl' if prediction_mode == "青龙港-陈行" else 'salinity_model_taicang.pkl'
|
if not os.path.exists(model_cache_file):
|
status_label.config(text="无法获取特征重要性信息,请先训练模型")
|
return
|
|
# 创建新窗口
|
importance_window = tk.Toplevel(root)
|
importance_window.title(f"{prediction_mode} - 特征重要性分析")
|
importance_window.geometry("800x600")
|
|
try:
|
with open(model_cache_file, 'rb') as f:
|
model_data = pickle.load(f)
|
|
# 创建XGBoost特征重要性表格
|
xgb_frame = ttk.Frame(importance_window, padding=10)
|
xgb_frame.pack(fill=tk.BOTH, expand=True)
|
|
# 创建特征重要性表格
|
xgb_tree = ttk.Treeview(xgb_frame, columns=("rank", "feature", "importance"), show="headings")
|
xgb_tree.heading("rank", text="排名")
|
xgb_tree.heading("feature", text="特征名称")
|
xgb_tree.heading("importance", text="重要性")
|
xgb_tree.column("rank", width=50)
|
xgb_tree.column("feature", width=300)
|
xgb_tree.column("importance", width=100)
|
|
# 添加滚动条
|
xgb_scrollbar = ttk.Scrollbar(xgb_frame, orient="vertical", command=xgb_tree.yview)
|
xgb_tree.configure(yscrollcommand=xgb_scrollbar.set)
|
|
# 放置表格和滚动条
|
xgb_tree.pack(side=tk.LEFT, fill=tk.BOTH, expand=True)
|
xgb_scrollbar.pack(side=tk.RIGHT, fill=tk.Y)
|
|
# 获取特征重要性和特征名称
|
feature_importance = model_data['models']['xgb'].feature_importances_
|
feature_names = model_data.get('feature_columns', [f'feature_{i}' for i in range(len(feature_importance))])
|
|
# 确保特征名称和重要性长度匹配
|
if len(feature_names) != len(feature_importance):
|
feature_names = [f'feature_{i}' for i in range(len(feature_importance))]
|
|
# 排序并填充表格
|
sorted_idx = np.argsort(feature_importance)[::-1]
|
for i, idx in enumerate(sorted_idx):
|
xgb_tree.insert("", tk.END, values=(i+1, feature_names[idx], f"{feature_importance[idx]:.6f}"))
|
|
# 添加特征重要性条形图
|
fig_frame = ttk.Frame(importance_window, padding=10)
|
fig_frame.pack(fill=tk.BOTH, expand=True)
|
|
# 仅显示前20个重要特征
|
top_n = min(20, len(sorted_idx))
|
top_features = [feature_names[idx] for idx in sorted_idx[:top_n]]
|
top_importance = [feature_importance[idx] for idx in sorted_idx[:top_n]]
|
|
fig, ax = plt.subplots(figsize=(7, 4), dpi=100)
|
y_pos = np.arange(len(top_features))
|
|
# 创建水平条形图
|
ax.barh(y_pos, top_importance, align='center')
|
ax.set_yticks(y_pos)
|
# 显示简化的特征名称(避免过长)
|
ax.set_yticklabels([f[:20] + '...' if len(f) > 20 else f for f in top_features])
|
ax.invert_yaxis() # 最重要的在顶部
|
ax.set_xlabel('特征重要性')
|
ax.set_title('XGBoost Top 20 特征重要性')
|
|
canvas = FigureCanvasTkAgg(fig, master=fig_frame)
|
canvas.draw()
|
canvas.get_tk_widget().pack(fill=tk.BOTH, expand=True)
|
|
except Exception as e:
|
print(f"加载XGBoost特征重要性失败: {e}")
|
|
# 添加关闭按钮
|
close_button = ttk.Button(importance_window, text="关闭", command=importance_window.destroy)
|
close_button.pack(pady=10)
|
|
except Exception as e:
|
status_label.config(text=f"显示特征重要性时出错: {str(e)}")
|
import traceback
|
traceback.print_exc()
|
|
def on_predict():
|
try:
|
predict_start = time()
|
status_label.config(text="预测中...")
|
root.update()
|
start_time_dt = pd.to_datetime(entry.get())
|
force_retrain = retrain_var.get()
|
future_dates, predictions, model, prediction_intervals = train_and_predict(df, start_time_dt, force_retrain)
|
if future_dates is None or predictions is None:
|
status_label.config(text="预测失败")
|
return
|
|
# 获取并显示模型准确度指标
|
model_metrics = get_model_metrics()
|
if model_metrics and model_metrics['rmse'] > 0:
|
metrics_text = f"模型准确度 - RMSE: {model_metrics['rmse']:.4f}, MAE: {model_metrics['mae']:.4f}"
|
else:
|
metrics_text = "模型准确度: 未知"
|
metrics_label.config(text=metrics_text)
|
|
# 清除图形并重新绘制
|
ax.clear()
|
|
# 绘制历史数据(预测时间点之前的所有数据)
|
history_end = min(start_time_dt, df['DateTime'].max())
|
history_start = df['DateTime'].min() # 使用所有可用的历史数据
|
hist_data = df[(df['DateTime'] >= history_start) & (df['DateTime'] <= history_end)]
|
|
# 确保数据不为空
|
if len(hist_data) == 0:
|
status_label.config(text="错误: 所选时间范围内没有历史数据")
|
return
|
|
# 检查source_name列是否存在,如果不存在则使用默认值
|
if 'source_name' in hist_data.columns:
|
source = hist_data["source_name"].iloc[0]
|
else:
|
# 根据当前预测模式判断上游名称
|
source = "青龙港" if prediction_mode == "青龙港-陈行" else "太仓石化"
|
|
# 绘制基本数据
|
ax.plot(hist_data['DateTime'], hist_data['downstream_smooth'],
|
label='陈行(下游)盐度', color='blue', linewidth=1.5)
|
ax.plot(hist_data['DateTime'], hist_data['upstream_smooth'],
|
label=f'{source}(上游)盐度', color='purple', linewidth=1.5, alpha=0.7)
|
|
# 添加盐度250的标注线
|
ax.axhline(y=250, color='red', linestyle='--', alpha=0.7, linewidth=1.5, label='盐度警戒线 (250)')
|
|
# 绘制预测数据
|
if len(future_dates) > 0 and len(predictions) > 0:
|
ax.plot(future_dates, predictions, marker='o', linestyle='--',
|
label='递归预测盐度', color='red', linewidth=2)
|
|
# 添加预测的置信区间
|
if prediction_intervals is not None:
|
ax.fill_between(future_dates, prediction_intervals[0], prediction_intervals[1],
|
color='red', alpha=0.2, label='95% 置信区间')
|
|
# 绘制实际数据(如果有)
|
actual_data = df[(df['DateTime'] >= start_time_dt) & (df['DateTime'] <= future_dates[-1])]
|
actual_values = None
|
|
if not actual_data.empty:
|
actual_values = []
|
# 获取与预测日期最接近的实际数据
|
for pred_date in future_dates:
|
closest_idx = np.argmin(np.abs(actual_data['DateTime'] - pred_date))
|
actual_values.append(actual_data['downstream_smooth'].iloc[closest_idx])
|
|
# 绘制实际盐度曲线
|
ax.plot(future_dates, actual_values, marker='s', linestyle='-',
|
label='实际盐度', color='orange', linewidth=2)
|
|
# 设置图表标题和标签
|
ax.set_xlabel('日期')
|
ax.set_ylabel('盐度')
|
ax.set_title(f"{prediction_mode}从 {start_time_dt.strftime('%Y-%m-%d %H:%M:%S')} 开始的递归单步盐度预测")
|
|
# 设置图例并应用紧凑布局
|
ax.legend(loc='best')
|
fig.tight_layout()
|
|
# 保存初始视图范围用于重置
|
global current_view
|
current_view['xlim'] = ax.get_xlim()
|
current_view['ylim'] = ax.get_ylim()
|
|
# 强制重绘
|
plt.close(fig)
|
fig.canvas.draw()
|
fig.canvas.flush_events()
|
plt.draw()
|
|
# 更新预测结果文本
|
predict_time = time() - predict_start
|
status_label.config(text=f"递归预测完成 (耗时: {predict_time:.2f}秒)")
|
|
# 显示预测结果
|
result_text = "递归单步预测结果:\n\n"
|
|
# 如果有实际值,计算差值和百分比误差
|
if actual_values is not None:
|
result_text += "日期 预测值 实际值 差值\n"
|
result_text += "--------------------------------------\n"
|
for i, (date, pred, actual) in enumerate(zip(future_dates, predictions, actual_values)):
|
if actual is not None: # 只在有实际值时显示差值
|
diff = pred - actual
|
result_text += f"{date.strftime('%Y-%m-%d')} {pred:6.2f} {actual:6.2f} {diff:6.2f}\n"
|
else:
|
result_text += f"{date.strftime('%Y-%m-%d')} {pred:6.2f} -- --\n"
|
else:
|
result_text += "日期 预测值\n"
|
result_text += "-------------------\n"
|
for i, (date, pred) in enumerate(zip(future_dates, predictions)):
|
result_text += f"{date.strftime('%Y-%m-%d')} {pred:6.2f}\n"
|
result_text += "\n无实际值进行对比"
|
|
update_result_text(result_text)
|
except Exception as e:
|
status_label.config(text=f"错误: {str(e)}")
|
import traceback
|
traceback.print_exc()
|
|
def display_history_data():
|
"""显示历史盐度数据"""
|
try:
|
# 清除图形并重新绘制
|
ax.clear()
|
|
# 获取所有历史数据
|
start_date = df['DateTime'].min()
|
end_date = df['DateTime'].max()
|
hist_data = df.copy() # 使用所有数据
|
|
# 确保数据不为空
|
if len(hist_data) == 0:
|
status_label.config(text="错误: 没有可用的历史数据")
|
return
|
|
# 绘制基本数据
|
ax.plot(hist_data['DateTime'], hist_data['downstream_smooth'],
|
label='陈行(下游)盐度', color='blue', linewidth=1.5)
|
|
# 检查source_name列是否存在,如果不存在则使用默认值
|
if 'source_name' in hist_data.columns:
|
source = hist_data["source_name"].iloc[0]
|
else:
|
# 根据当前预测模式判断上游名称
|
source = "青龙港" if prediction_mode == "青龙港-陈行" else "太仓石化"
|
|
ax.plot(hist_data['DateTime'], hist_data['upstream_smooth'],
|
label=f'{source}(上游)盐度', color='purple', linewidth=1.5, alpha=0.7)
|
|
# 添加盐度250的标注线
|
ax.axhline(y=250, color='red', linestyle='--', alpha=0.7, linewidth=1.5, label='盐度警戒线 (250)')
|
|
# 设置图表标题和标签
|
ax.set_xlabel('日期')
|
ax.set_ylabel('盐度')
|
ax.set_title(f"{prediction_mode}全部历史盐度数据 ({start_date.strftime('%Y-%m-%d')} 至 {end_date.strftime('%Y-%m-%d')})")
|
|
# 设置图例并应用紧凑布局
|
ax.legend(loc='best')
|
fig.tight_layout()
|
|
# 保存初始视图范围用于重置
|
global current_view
|
current_view['xlim'] = ax.get_xlim()
|
current_view['ylim'] = ax.get_ylim()
|
|
# 强制重绘
|
plt.close(fig)
|
fig.canvas.draw()
|
fig.canvas.flush_events()
|
plt.draw()
|
|
status_label.config(text=f"显示全部历史数据 ({len(hist_data)} 个数据点)")
|
|
# 更新结果文本
|
result_text = "历史盐度统计信息:\n\n"
|
result_text += f"数据时间范围: {start_date.strftime('%Y-%m-%d')} 至 {end_date.strftime('%Y-%m-%d')}\n"
|
result_text += f"数据点数量: {len(hist_data)}\n\n"
|
result_text += f"{source}上游盐度:\n"
|
result_text += f" 最小值: {hist_data['upstream_smooth'].min():.2f}\n"
|
result_text += f" 最大值: {hist_data['upstream_smooth'].max():.2f}\n"
|
result_text += f" 平均值: {hist_data['upstream_smooth'].mean():.2f}\n"
|
result_text += f" 标准差: {hist_data['upstream_smooth'].std():.2f}\n\n"
|
result_text += "陈行下游盐度:\n"
|
result_text += f" 最小值: {hist_data['downstream_smooth'].min():.2f}\n"
|
result_text += f" 最大值: {hist_data['downstream_smooth'].max():.2f}\n"
|
result_text += f" 平均值: {hist_data['downstream_smooth'].mean():.2f}\n"
|
result_text += f" 标准差: {hist_data['downstream_smooth'].std():.2f}\n"
|
|
update_result_text(result_text)
|
except Exception as e:
|
status_label.config(text=f"显示历史数据时出错: {str(e)}")
|
import traceback
|
traceback.print_exc()
|
|
def on_scroll(event):
|
xlim = ax.get_xlim()
|
ylim = ax.get_ylim()
|
zoom_factor = 1.1
|
x_data = event.xdata if event.xdata is not None else (xlim[0]+xlim[1])/2
|
y_data = event.ydata if event.ydata is not None else (ylim[0]+ylim[1])/2
|
x_rel = (x_data - xlim[0]) / (xlim[1] - xlim[0])
|
y_rel = (y_data - ylim[0]) / (ylim[1] - ylim[0])
|
if event.step > 0:
|
new_width = (xlim[1]-xlim[0]) / zoom_factor
|
new_height = (ylim[1]-ylim[0]) / zoom_factor
|
x0 = x_data - x_rel * new_width
|
y0 = y_data - y_rel * new_height
|
ax.set_xlim([x0, x0+new_width])
|
ax.set_ylim([y0, y0+new_height])
|
else:
|
new_width = (xlim[1]-xlim[0]) * zoom_factor
|
new_height = (ylim[1]-ylim[0]) * zoom_factor
|
x0 = x_data - x_rel * new_width
|
y0 = y_data - y_rel * new_height
|
ax.set_xlim([x0, x0+new_width])
|
ax.set_ylim([y0, y0+new_height])
|
canvas.draw_idle()
|
|
def update_cursor(event):
|
if event.inaxes == ax:
|
canvas.get_tk_widget().config(cursor="fleur")
|
else:
|
canvas.get_tk_widget().config(cursor="")
|
|
def reset_view():
|
global current_view
|
if current_view['xlim'] is not None:
|
# 应用保存的视图范围
|
ax.set_xlim(current_view['xlim'])
|
ax.set_ylim(current_view['ylim'])
|
|
# 应用紧凑布局并重绘
|
fig.tight_layout()
|
canvas.draw_idle()
|
status_label.config(text="图表视图已重置")
|
else:
|
status_label.config(text="没有可用的初始视图范围")
|
|
root = tk.Tk()
|
root.title(f"{prediction_mode}盐度预测系统")
|
try:
|
configure_gui_fonts()
|
except Exception as e:
|
print("字体配置异常:", e)
|
|
# 恢复输入框和控制按钮
|
input_frame = ttk.Frame(root, padding="10")
|
input_frame.pack(fill=tk.X)
|
|
ttk.Label(input_frame, text="输入开始时间 (YYYY-MM-DD HH:MM:SS)").pack(side=tk.LEFT)
|
entry = ttk.Entry(input_frame, width=25)
|
entry.pack(side=tk.LEFT, padx=5)
|
predict_button = ttk.Button(input_frame, text="预测", command=on_predict)
|
predict_button.pack(side=tk.LEFT)
|
status_label = ttk.Label(input_frame, text="提示: 第一次运行请勾选'强制重新训练模型'")
|
status_label.pack(side=tk.LEFT, padx=10)
|
|
control_frame = ttk.Frame(root, padding="5")
|
control_frame.pack(fill=tk.X)
|
retrain_var = tk.BooleanVar(value=False)
|
ttk.Checkbutton(control_frame, text="强制重新训练模型", variable=retrain_var).pack(side=tk.LEFT)
|
|
# 添加显示历史数据按钮
|
history_button = ttk.Button(control_frame, text="显示历史数据", command=display_history_data)
|
history_button.pack(side=tk.LEFT, padx=5)
|
|
# 添加切换数据源的按钮
|
switch_button = ttk.Button(control_frame, text="切换到太仓石化-陈行", command=switch_prediction_mode)
|
switch_button.pack(side=tk.LEFT, padx=5)
|
|
# # 添加查看特征重要性按钮
|
# feature_button = ttk.Button(control_frame, text="查看特征重要性", command=show_feature_importance)
|
# feature_button.pack(side=tk.LEFT, padx=5)
|
|
# 更新图例说明,添加盐度警戒线信息
|
legend_label = ttk.Label(control_frame, text="图例: 紫色=上游数据, 蓝色=下游数据, 红色=预测值, 橙色=实际值, 红色虚线=盐度警戒线(250)")
|
legend_label.pack(side=tk.LEFT, padx=10)
|
reset_button = ttk.Button(control_frame, text="重置视图", command=reset_view)
|
reset_button.pack(side=tk.LEFT, padx=5)
|
|
# 添加显示模型准确度的标签
|
metrics_frame = ttk.Frame(root, padding="5")
|
metrics_frame.pack(fill=tk.X)
|
model_metrics = get_model_metrics()
|
metrics_text = "模型准确度: 未知" if not model_metrics else f"模型准确度 - RMSE: {model_metrics['rmse']:.4f}, MAE: {model_metrics['mae']:.4f}"
|
metrics_label = ttk.Label(metrics_frame, text=metrics_text)
|
metrics_label.pack(side=tk.LEFT, padx=10)
|
|
# 结果显示区域
|
result_frame = ttk.Frame(root, padding="10")
|
result_frame.pack(fill=tk.BOTH, expand=True)
|
|
# 左侧放置图表
|
plot_frame = ttk.Frame(result_frame, width=800, height=600)
|
plot_frame.pack(side=tk.LEFT, fill=tk.BOTH, expand=True)
|
plot_frame.pack_propagate(False) # 不允许框架根据内容调整大小
|
|
# 右侧放置文本结果
|
text_frame = ttk.Frame(result_frame)
|
text_frame.pack(side=tk.RIGHT, fill=tk.Y)
|
|
# 使用等宽字体显示结果
|
result_font = tkfont.Font(family="Courier New", size=10, weight="normal")
|
|
# 添加文本框和滚动条
|
result_text = tk.Text(text_frame, width=50, height=25, font=result_font, wrap=tk.NONE)
|
result_text.pack(side=tk.LEFT, fill=tk.BOTH)
|
result_scroll = ttk.Scrollbar(text_frame, orient="vertical", command=result_text.yview)
|
result_scroll.pack(side=tk.RIGHT, fill=tk.Y)
|
result_text.configure(yscrollcommand=result_scroll.set)
|
result_text.configure(state=tk.DISABLED) # 初始设为只读
|
|
# 更新结果文本的函数
|
def update_result_text(text):
|
result_text.configure(state=tk.NORMAL)
|
result_text.delete(1.0, tk.END)
|
result_text.insert(tk.END, text)
|
result_text.configure(state=tk.DISABLED)
|
|
# 创建更高DPI的图形以获得更好的显示质量
|
fig, ax = plt.subplots(figsize=(10, 6), dpi=100)
|
fig.tight_layout(pad=3.0) # 增加内边距,防止标签被截断
|
|
# 创建画布并添加到固定大小的框架
|
canvas = FigureCanvasTkAgg(fig, master=plot_frame)
|
canvas.get_tk_widget().pack(side=tk.TOP, fill=tk.BOTH, expand=True)
|
|
# 添加工具栏,包含缩放、保存等功能
|
toolbar_frame = ttk.Frame(plot_frame)
|
toolbar_frame.pack(side=tk.BOTTOM, fill=tk.X)
|
toolbar = NavigationToolbar2Tk(canvas, toolbar_frame)
|
toolbar.update()
|
|
# 启用紧凑布局,并设置自动调整以使图表完全显示
|
def on_resize(event):
|
fig.tight_layout()
|
canvas.draw_idle()
|
|
# 添加图表交互功能
|
canvas.mpl_connect('resize_event', on_resize)
|
canvas.mpl_connect('scroll_event', on_scroll)
|
canvas.mpl_connect('motion_notify_event', update_cursor)
|
|
# 添加鼠标拖动功能
|
def on_press(event):
|
if event.inaxes != ax:
|
return
|
canvas.get_tk_widget().config(cursor="fleur")
|
ax._pan_start = (event.x, event.y, event.xdata, event.ydata)
|
|
def on_release(event):
|
ax._pan_start = None
|
canvas.get_tk_widget().config(cursor="")
|
canvas.draw_idle()
|
|
def on_motion(event):
|
if not hasattr(ax, '_pan_start') or ax._pan_start is None:
|
return
|
if event.inaxes != ax:
|
return
|
|
start_x, start_y, x_data, y_data = ax._pan_start
|
dx = event.x - start_x
|
dy = event.y - start_y
|
|
# 获取当前视图
|
xlim = ax.get_xlim()
|
ylim = ax.get_ylim()
|
|
# 计算图表坐标系中的移动
|
x_scale = (xlim[1] - xlim[0]) / canvas.get_tk_widget().winfo_width()
|
y_scale = (ylim[1] - ylim[0]) / canvas.get_tk_widget().winfo_height()
|
|
# 更新视图
|
ax.set_xlim(xlim[0] - dx * x_scale, xlim[1] - dx * x_scale)
|
ax.set_ylim(ylim[0] + dy * y_scale, ylim[1] + dy * y_scale)
|
|
# 更新拖动起点
|
ax._pan_start = (event.x, event.y, event.xdata, event.ydata)
|
|
canvas.draw_idle()
|
|
# 连接鼠标事件
|
canvas.mpl_connect('button_press_event', on_press)
|
canvas.mpl_connect('button_release_event', on_release)
|
canvas.mpl_connect('motion_notify_event', on_motion)
|
|
# 初始显示历史数据
|
display_history_data()
|
|
root.mainloop()
|
|
# 向量化构造训练样本(优化特征工程)
|
# -------------------------------
|
def create_features_vectorized(df, look_back=168, forecast_horizon=1):
|
"""
|
向量化构造训练样本,使用过去7天的所有原始数据来预测未来1天的下游盐度均值
|
"""
|
try:
|
# 确保数据按时间排序
|
df = df.sort_values('DateTime')
|
|
# 获取所有数值列(排除DateTime列)
|
numeric_columns = df.select_dtypes(include=[np.number]).columns.tolist()
|
if 'DateTime' in numeric_columns:
|
numeric_columns.remove('DateTime')
|
|
# 初始化特征和标签列表
|
features = [] # x输入
|
targets = [] # y输出
|
|
# 使用滑动窗口创建样本
|
for i in range(len(df) - look_back - forecast_horizon + 1):
|
# 获取7天的特征窗口
|
window = df.iloc[i:i+look_back]
|
|
# 提取特征 - 使用所有原始数据
|
window_features = []
|
for col in numeric_columns:
|
# 获取列数据并处理NaN值
|
col_values = window[col].fillna(method='ffill').fillna(method='bfill').values
|
window_features.extend(col_values)
|
|
# 添加时间特征
|
current_date = window['DateTime'].iloc[-1]
|
window_features.extend([
|
current_date.month,
|
current_date.day,
|
current_date.weekday()
|
])
|
|
# 新增:增强最近时段数据的权重(最后24小时的数据权重提高)
|
# 提取最后24小时的上游和下游盐度数据
|
last_24h = window.iloc[-24:]
|
if len(last_24h) == 24:
|
# # 上游盐度的最后24小时数据,每小时一个点
|
# recent_upstream = last_24h['upstream_smooth'].values
|
# 下游盐度的最后24小时数据,每小时一个点
|
recent_downstream = last_24h['downstream_smooth'].values
|
|
# 计算最后24小时的统计特征
|
recent_stats = [
|
# np.mean(recent_upstream), # 均值
|
# np.std(recent_upstream), # 标准差
|
np.mean(recent_downstream), # 均值
|
np.std(recent_downstream), # 标准差
|
# recent_upstream[-1] - recent_upstream[0], # 总变化
|
recent_downstream[-1] - recent_downstream[0], # 总变化
|
# np.mean(np.diff(recent_upstream)), # 平均变化率
|
np.mean(np.diff(recent_downstream)) # 平均变化率
|
]
|
|
# 添加到特征中,并给这些特征3倍的权重(重复添加)
|
window_features.extend(recent_stats)
|
window_features.extend(recent_stats) # 重复一次增加权重
|
window_features.extend(recent_stats) # 再次重复
|
|
# 获取目标值(未来1天的下游盐度均值)
|
next_day = df.iloc[i+look_back:i+look_back+24] # 获取未来24小时的数据
|
# 处理目标值中的NaN
|
target_values = next_day['downstream_smooth'].fillna(method='ffill').fillna(method='bfill').values
|
target = np.mean(target_values)
|
|
# 检查特征和目标值是否有效
|
if not np.any(np.isnan(window_features)) and not np.isnan(target) and not np.isinf(target):
|
features.append(window_features)
|
targets.append(target)
|
|
if not features:
|
print("警告: 未能生成任何有效特征")
|
return np.array([]), np.array([])
|
|
# 转换为numpy数组
|
X = np.array(features)
|
y = np.array(targets)
|
|
print(f"成功生成特征矩阵,形状: {X.shape}")
|
return X, y
|
|
except Exception as e:
|
print(f"特征创建异常: {e}")
|
return np.array([]), np.array([])
|
|
def generate_prediction_features(df, current_date, look_back=168):
|
"""
|
为预测生成特征,使用与create_features_vectorized相同的特征生成逻辑
|
"""
|
try:
|
# 确保数据按时间排序
|
df = df.sort_values('DateTime')
|
|
# 获取所有数值列(排除DateTime列)
|
numeric_columns = df.select_dtypes(include=[np.number]).columns.tolist()
|
if 'DateTime' in numeric_columns:
|
numeric_columns.remove('DateTime')
|
|
# 找到当前日期在数据中的位置
|
current_idx = df[df['DateTime'] <= current_date].index[-1]
|
|
# 获取过去168小时(7天)的数据窗口
|
if current_idx < look_back:
|
print(f"数据不足,需要{look_back}小时的数据,但只有{current_idx+1}小时")
|
return None
|
|
window = df.iloc[current_idx-look_back+1:current_idx+1]
|
|
# 提取特征 - 使用所有原始数据
|
features = []
|
for col in numeric_columns:
|
# 直接使用原始数据作为特征
|
features.extend(window[col].values)
|
|
# 添加时间特征
|
features.extend([
|
current_date.month,
|
current_date.day,
|
current_date.weekday()
|
])
|
|
# 新增:增强最近时段数据的权重(最后24小时的数据权重提高)
|
# 提取最后24小时的数据
|
last_24h = window.iloc[-24:]
|
if len(last_24h) == 24:
|
# 上游盐度的最后24小时数据,每小时一个点
|
recent_upstream = last_24h['upstream_smooth'].values
|
# 下游盐度的最后24小时数据,每小时一个点
|
recent_downstream = last_24h['downstream_smooth'].values
|
|
# 计算最后24小时的统计特征
|
recent_stats = [
|
np.mean(recent_upstream), # 均值
|
np.std(recent_upstream), # 标准差
|
np.mean(recent_downstream), # 均值
|
np.std(recent_downstream), # 标准差
|
recent_upstream[-1] - recent_upstream[0], # 总变化
|
recent_downstream[-1] - recent_downstream[0], # 总变化
|
np.mean(np.diff(recent_upstream)), # 平均变化率
|
np.mean(np.diff(recent_downstream)) # 平均变化率
|
]
|
|
# 添加到特征中,并给这些特征3倍的权重(重复添加)
|
features.extend(recent_stats)
|
features.extend(recent_stats) # 重复一次增加权重
|
features.extend(recent_stats) # 再次重复
|
|
return np.array(features)
|
|
except Exception as e:
|
print(f"预测特征生成异常: {e}")
|
return None
|
|
# 主函数
|
def main():
|
global df, current_df, qinglong_df, taicang_df
|
# 加载两个数据集
|
qinglong_df, taicang_df = load_both_datasets()
|
current_df = qinglong_df # 默认使用青龙港-陈行数据集
|
|
if current_df is not None:
|
df = current_df # 设置当前使用的数据集
|
run_gui()
|
else:
|
print("数据加载失败,无法运行预测。")
|
|
# 在程序入口处调用main函数
|
if __name__ == "__main__":
|
main()
|