ningshuxia
2025-04-16 a67da735b33be01b24845ce03ae7551cf55ddbbc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
 
using Accord.Math.Optimization;
using MathNet.Numerics;
using MathNet.Numerics.Interpolation;
using MathNet.Numerics.LinearAlgebra;
using MathNet.Numerics.LinearRegression;
using MathNet.Numerics.Statistics;
 
namespace IStation.Test
{
 
    /// <summary>
    /// 泵曲线数据融合校正器(用于合并样条曲线和实测数据并进行优化)
    /// </summary>
    public class PumpCurveDataFusionCorrectorHelper
    {
        # region 配置参数
        // 异常值检测阈值(基于标准正态分布,2.5对应98.76%置信区间)
        public const double ZScoreThreshold = 2.5;
        // 过渡区域宽度(单位与输入数据相同,控制曲线衔接平滑度)
        public const double TransitionWidth = 500;
        // 多项式拟合阶数(三次平衡拟合能力与过拟合风险)
        public const int PolynomialDegree = 3;
        // 优化器最大迭代次数(Cobyla算法收敛阈值)
        private const int OptimizationMaxIterations = 1000;
        # endregion
 
        /// <summary>
        /// 主校正方法(入口函数)
        /// </summary>
        /// <param name="splineX">样条曲线X坐标</param>
        /// <param name="splineY">样条曲线Y坐标</param>
        /// <param name="measuredXAll">原始实测X坐标</param>
        /// <param name="measuredYAll">原始实测Y坐标</param>
        /// <returns>
        /// mergedX: 融合后的X坐标
        /// mergedY: 初步融合的Y坐标
        /// optimizedX: 优化后的X坐标采样
        /// optimizedY: 优化后的Y坐标结果
        /// </returns>
        public (double[] mergedX, double[] mergedY, double[] optimizedX, double[] optimizedY) Corrent(
            double[] splineX, double[] splineY,
            double[] measuredXAll, double[] measuredYAll)
        {
            # region 步骤1:稳健回归与异常值过滤(最小二乘法)
            // 执行简单线性回归获取基准线
            (double intercept, double slope) = SimpleRegression.Fit(measuredXAll, measuredYAll);
 
            // 计算预测值和残差
            double[] predictedY = measuredXAll.Select(x => slope * x + intercept).ToArray();
            double[] residuals = measuredYAll.Zip(predictedY, (m, p) => m - p).ToArray();
 
            // 基于Z-Score的异常值过滤
            var zScoreCalculator = new ZScore(residuals);
            bool[] validMask = zScoreCalculator.Scores
                .Select(score => Math.Abs(score) < ZScoreThreshold).ToArray();
 
            // 过滤得到有效实测数据
            var validData = measuredXAll.Zip(measuredYAll, validMask)
                .Where(t => t.Third)
                .Select(t => (t.First, t.Second)).ToList();
            double[] measuredXValid = validData.Select(t => t.First).ToArray();
            double[] measuredYValid = validData.Select(t => t.Second).ToArray();
            # endregion
 
            if (measuredXValid.Length < 5)
            {
                Console.WriteLine("异常值过滤后数据过小");
                return default;
            }
 
            return ProcessData(splineX, splineY, measuredXValid, measuredYValid,
                             PolynomialDegree, TransitionWidth);
        }
 
        /// <summary>
        /// 核心数据处理流程(包含数据融合、过渡处理和优化)
        /// </summary>
        private (double[] mergedX, double[] mergedY, double[] optimizedX, double[] optimizedY) ProcessData(
            double[] splineX, double[] splineY,
            double[] measuredXValid, double[] measuredYValid,
            int polyDegree, double transitionWidth)
        {
            # region 步骤2:多项式拟合与初步融合
            // 对有效实测数据进行多项式拟合
            var polyFunc = Polynomial.Fit(measuredXValid, measuredYValid, polyDegree);
            double[] polyCoeffs = polyFunc.Coefficients.Reverse().ToArray(); // 注意系数顺序转换
 
            // 生成融合后的X坐标序列(合并样条和实测范围)
            double[] mergedX = GenerateMergedX(splineX, measuredXValid, 200);
 
            // 创建样条插值器并生成初始融合曲线
            var splineInterpolator = LinearSpline.InterpolateSorted(splineX, splineY);
            //double[] mergedY = mergedX.Select(x =>
            //    x < splineX[0] ? splineY[0] :         // 左外推
            //    x > splineX.Last() ? splineY.Last() :  // 右外推
            //    splineInterpolator.Interpolate(x)      // 插值区域
            //).ToArray();
 
            double[] mergedY = mergedX.Select(x =>
             //x < splineX[0] ? splineY[0] :         // 左外推
             //x > splineX.Last() ? splineY.Last() :  // 右外推
             splineInterpolator.Interpolate(x)      // 插值区域
         ).ToArray();
            # endregion
 
            # region 步骤3:核心区域修正
            // 在实测数据范围内应用多项式拟合结果
            double minX = measuredXValid.Min(), maxX = measuredXValid.Max();
            bool[] coreMask = mergedX.Select(x => x >= minX && x <= maxX).ToArray();
            for (int i = 0; i < mergedX.Length; i++)
            {
                if (coreMask[i])
                    mergedY[i] = EvaluatePolynomial(polyCoeffs, mergedX[i]);
            }
            # endregion
 
            # region 步骤4:过渡区域处理
            // 对左右过渡区域进行平滑处理
            var splinePoly = Polynomial.Fit(splineX, splineY, polyDegree);
            double[] splineCoeffs = splinePoly.Coefficients.Reverse().ToArray();
 
            // 左过渡区处理(样条->多项式)
            ApplyTransition(
                (minX - transitionWidth, minX),
                splineCoeffs,
                polyCoeffs,
                mergedX,
                ref mergedY
            );
 
            // 右过渡区处理(多项式->样条)
            ApplyTransition(
                (maxX, maxX + transitionWidth),
                polyCoeffs,
                splineCoeffs,
                mergedX,
                ref mergedY
            );
            # endregion
 
            # region 步骤5:带约束优化
            // 数据标准化处理
            double xMean = mergedX.Average();
            double xStd = ArrayStatistics.PopulationStandardDeviation(mergedX);
            double[] xNorm = mergedX.Select(x => (x - xMean) / xStd).ToArray();
 
            // 构建三次多项式优化问题
            var X = Matrix<double>.Build.DenseOfRowArrays(
                xNorm.Select(x => new[] { Math.Pow(x, 3), x * x, x, 1.0 }).ToArray()
            );
            var initialParams = MultipleRegression.QR(X, Vector<double>.Build.DenseOfArray(mergedY));
 
            // 设置单调性约束(导数非负)
            var constraints = GenerateLinspace(xNorm.Min(),  xNorm.Max(), 50)
                .Select(x => new NonlinearConstraint(
                    numberOfVariables: 4,
                    function: p => -Derivative(p, x), // 导数>=0
                    shouldBe: ConstraintType.GreaterThanOrEqualTo,
                    value: 0
                )).ToList();
 
            // 执行COBYLA优化
            var optimizer = new Cobyla(
                function: BuildObjectiveFunction(xNorm, mergedY),
                constraints: constraints.ToArray()
            )
            { MaxIterations = OptimizationMaxIterations };
 
            bool success = optimizer.Minimize(initialParams.ToArray());
            double[] optimizedParams = optimizer.Solution;
            # endregion
 
            // 生成最终优化曲线
            double[] optimizedX = GenerateLinspace(
                Math.Min(splineX.Min(), minX),
                Math.Max(splineX.Max(), maxX),
                300
            );
            double[] optimizedY = optimizedX
                .Select(x => CubicModel(optimizedParams, (x - xMean) / xStd))
                .ToArray();
 
            return (mergedX, mergedY, optimizedX, optimizedY);
        }
 
        # region 工具方法
 
        /// <summary>
        /// 三次多项式模型(降幂排列)
        /// </summary>
        private static double CubicModel(double[] param, double x) =>
            param[0] * x * x * x + param[1] * x * x + param[2] * x + param[3];
 
        /// <summary>
        /// 多项式导数(用于单调性约束)
        /// </summary>
        private static double Derivative(double[] param, double x) =>
            3 * param[0] * x * x + 2 * param[1] * x + param[2];
 
        /// <summary>
        /// 构建目标函数(均方误差)
        /// </summary>
        private NonlinearObjectiveFunction BuildObjectiveFunction(double[] xNorm, double[] y) =>
            new NonlinearObjectiveFunction(4, p =>
                xNorm.Select((x, i) => Math.Pow(CubicModel(p, x) - y[i], 2)).Average()
            );
 
        /// <summary>
        /// 多项式求值(霍纳法则)
        /// </summary>
        private static double EvaluatePolynomial(double[] coeffs, double x) =>
            coeffs.Aggregate((sum, c) => sum * x + c);
 
        /// <summary>
        /// 生成等间距采样点
        /// </summary>
        private static double[] GenerateLinspace(double start, double end, int numPoints) =>
            Enumerable.Range(0, numPoints)
                .Select(i => start + i * (end - start) / (numPoints - 1))
                .ToArray();
        # endregion
 
        # region 过渡处理
        /// <summary>
        /// 应用过渡混合(在两个多项式之间渐变)
        /// </summary>
        private static void ApplyTransition(
            (double start, double end) range,
            double[] baseCoeffs,
            double[] targetCoeffs,
            double[] xValues,
            ref double[] yValues)
        {
            for (int i = 0; i < xValues.Length; i++)
            {
                double x = xValues[i];
                if (x < range.start || x > range.end) continue;
 
                double weight = (x - range.start) / (range.end - range.start);
                double baseVal = EvaluatePolynomial(baseCoeffs, x);
                double targetVal = EvaluatePolynomial(targetCoeffs, x);
                yValues[i] = (1 - weight) * baseVal + weight * targetVal;
            }
        }
 
        /// <summary>
        /// 生成合并的 x 值
        /// </summary> 
        public static double[] GenerateMergedX(double[] splineX, double[] measuredXValid, int numPoints)
        {
            // 生成等间距的点
            double[] linspace = GenerateLinspace(measuredXValid.Min(), measuredXValid.Max(), numPoints);
            // 拼接并去重排序
            var concat = splineX.Concat(linspace).ToArray();
            var merged = concat.Distinct().OrderBy(x => x).ToArray();
            return merged;
        }
 
        # endregion
 
        # region 辅助类
 
        /// <summary>
        /// Z分数计算器(用于异常值检测)
        /// </summary>
        private class ZScore
        {
            public readonly double[] Scores;
 
            public ZScore(double[] data)
            {
                double mean = data.Average();
                double std = data.StandardDeviation();
                Scores = data.Select(x => (x - mean) / std).ToArray();
            }
        }
 
        # endregion
    }
}