ningshuxia
2025-04-16 ed113213fc94c3d9886ea08dfddd09d08d9ba7d5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
using IStation.Model;
using MathNet.Numerics;
using MathNet.Numerics.Interpolation;
using MathNet.Numerics.LinearRegression;
using MathNet.Numerics.Statistics;
using System.Data;
using System.Text;
namespace IStation.Test
{
    internal class Program
    {
 
        //// 过滤无效数据
        //// 1输模型修正
        //// 2输数据修正
        //// 修正组合偏差
        //static void Main(string[] args)
        //{
        //    Station2Helper.Start();
        //    Console.WriteLine();
        //    Console.WriteLine();
        //    Console.WriteLine("ok");
        //    Console.ReadKey();
        //}
 
 
        // 过滤无效数据
        // 1输模型修正
        // 2输数据修正
        // 修正组合偏差
        static void Main(string[] args)
        {
            var splineList = new List<CurvePoint>();
            var measuredList = new List<CurvePoint>();
 
            var path = AppDomain.CurrentDomain.BaseDirectory;
            var lienPaht = path + @"\pumpcsv\23_34_old_curve.csv";
            var measuredPath = path + @"\pumpcsv\23_34.csv";
 
            using (var fs = new FileStream(lienPaht, FileMode.Open, FileAccess.Read))
            using (var sr = new StreamReader(fs, Encoding.UTF8))
            {
                var strLine = string.Empty;
                sr.ReadLine();
                while (!string.IsNullOrEmpty(strLine = sr.ReadLine()))
                {
                    var strList = strLine.Split(',');
                    var x = double.Parse(strList[0]);
                    var y = double.Parse(strList[1]);
                    splineList.Add(new CurvePoint(x, y));
                }
            }
 
            using (var fs = new FileStream(measuredPath, FileMode.Open, FileAccess.Read))
            using (var sr = new StreamReader(fs, Encoding.UTF8))
            {
                var strLine = string.Empty;
                sr.ReadLine();
                while (!string.IsNullOrEmpty(strLine = sr.ReadLine()))
                {
                    var strList = strLine.Split(',');
                    var x = double.Parse(strList[4]);
                    var y = double.Parse(strList[5]);
                    measuredList.Add(new CurvePoint(x, y));
                }
            }
 
 
            // 样条曲线处理
            double[] splineX = splineList.Select(x => x.X).ToArray();
            double[] splineY = splineList.Select(x => x.Y).ToArray();
 
            // 实测数据处理
            double[] measuredXAll = measuredList.Select(x => x.X).ToArray();
            double[] measuredYAll = measuredList.Select(x => x.Y).ToArray();
 
 
            // 基于稳健回归的异常值检测
            // 使用 MathNet 进行线性回归
            (double A, double B) = SimpleRegression.Fit(measuredXAll, measuredYAll);
            double intercept = A;
            double slope = B;
 
            // 计算预测值
            double[] predictedY = new double[measuredXAll.Length];
            for (int i = 0; i < measuredXAll.Length; i++)
            {
                predictedY[i] = slope * measuredXAll[i] + intercept;
            }
 
            // 计算残差
            double[] residuals = new double[measuredYAll.Length];
            for (int i = 0; i < measuredYAll.Length; i++)
            {
                residuals[i] = measuredYAll[i] - predictedY[i];
            }
 
            // 使用改进的异常值过滤策略(Z-Score)
            double[] zScores = new ZScore(residuals).Scores;
            bool[] validMask = new bool[zScores.Length];
            double zScoreThreshold = Config.Z_SCORE_THRESHOLD; // 假设 Config 是一个配置类
 
            for (int i = 0; i < zScores.Length; i++)
            {
                validMask[i] = Math.Abs(zScores[i]) < zScoreThreshold;
            }
 
            // 过滤掉异常值
            double[] measuredXValid = new double[validMask.Length];
            double[] measuredYValid = new double[validMask.Length];
            int validCount = 0;
 
            for (int i = 0; i < validMask.Length; i++)
            {
                if (validMask[i])
                {
                    measuredXValid[validCount] = measuredXAll[i];
                    measuredYValid[validCount] = measuredYAll[i];
                    validCount++;
                }
            }
 
            // 截断数组到有效长度
            Array.Resize(ref measuredXValid, validCount);
            Array.Resize(ref measuredYValid, validCount);
 
            // 此处可以继续处理 measuredXValid 和 measuredYValid
            Console.WriteLine("有效数据点数量: " + validCount);
 
            var dataFusion = new DataFusionKimi(splineX, splineY, measuredXValid, measuredYValid, 3, 500);
            (double[] mergedX, double[] mergedY, double[] optimizedX, double[] optimizedY) = dataFusion.ProcessData();
 
            Console.WriteLine($"{splineX.Min()},{splineX.Max()}");
            Console.WriteLine($"{mergedX.Min()},{mergedX.Max()}");
            Console.WriteLine($"{optimizedX.Min()},{optimizedX.Max()}");
 
            Console.WriteLine($"{splineY.Min()},{splineY.Max()}");
            Console.WriteLine($"{mergedY.Min()},{mergedY.Max()}");
            Console.WriteLine($"{optimizedY.Min()},{optimizedY.Max()}");
 
            var pt_list=new List<CurvePoint>();
            for (int i = 0; i < optimizedX.Length; i++)
            {
                var x = optimizedX[i];
                var y = optimizedY[i];
                pt_list.Add(new CurvePoint(x,y));
            }
            var fullPath = Path.Combine(AppDomain.CurrentDomain.BaseDirectory, "pumpcsv");
            CsvHelper.ExportToCsv(pt_list, Path.Combine(fullPath, $"{23_34}_c.csv"));
             
            Console.WriteLine("ok");
 
            Console.WriteLine("ok");
            Console.ReadKey();
        }
 
 
    }
 
 
 
 
    // 配置类(假设)
    public static class Config
    {
        public const double Z_SCORE_THRESHOLD = 2.5;
        public const double TRANSITION_WIDTH = 500.0;
    }
 
    // Z-Score 计算辅助类
    public class ZScore
    {
        private readonly double[] _data;
        private readonly double _mean;
        private readonly double _stdDev;
 
        public ZScore(double[] data)
        {
            _data = data;
            _mean = data.Mean();
            _stdDev = data.StandardDeviation();
        }
 
        public double[] Scores
        {
            get
            {
                double[] scores = new double[_data.Length];
                for (int i = 0; i < _data.Length; i++)
                {
                    scores[i] = (_data[i] - _mean) / _stdDev;
                }
                return scores;
            }
        }
    }
 
 
    public class DataFusion
    {
        private double[] splineX;
        private double[] splineY;
        private double[] measuredXValid;
        private double[] measuredYValid;
        private int polyDegree;
        private double transitionWidth;
 
        public DataFusion(double[] splineX, double[] splineY, double[] measuredXValid, double[] measuredYValid, int polyDegree, double transitionWidth)
        {
            this.splineX = splineX;
            this.splineY = splineY;
            this.measuredXValid = measuredXValid;
            this.measuredYValid = measuredYValid;
            this.polyDegree = polyDegree;
            this.transitionWidth = transitionWidth;
        }
 
        public (double[] mergedX, double[] mergedY) ProcessData()
        {
            // 多项式拟合实测数据
            double[] polyCoeff = Fit.Polynomial(measuredXValid, measuredYValid, polyDegree);
            Polynomial polyFunc = new Polynomial(polyCoeff);
 
            // 初始化融合曲线
            double[] mergedX = SortAndUnique(
                splineX.Concat(
                    Enumerable.Range(0, 200).Select(i => measuredXValid.Min() + i * (measuredXValid.Max() - measuredXValid.Min()) / 199.0).ToArray()
                ).ToArray()
            );
 
            var interpolator = LinearSpline.InterpolateSorted(splineX, splineY);
            double[] mergedY = mergedX.Select(x => interpolator.Interpolate(x)).ToArray();
 
            // 核心区域修正
            bool[] coreMask = mergedX.Select(x => x >= measuredXValid.Min() && x <= measuredXValid.Max()).ToArray();
            for (int i = 0; i < mergedX.Length; i++)
            {
                if (coreMask[i])
                {
                    mergedY[i] = polyFunc.Evaluate(mergedX[i]);
                }
            }
 
            // 动态过渡处理
            ApplyTransition(
                transitionRange: (measuredXValid.Min() - transitionWidth, measuredXValid.Min()),
                baseFunc: CreateSplinePolynomial(),
                targetFunc: polyFunc,
                mergedX: mergedX,
                mergedY: mergedY
            );
 
            ApplyTransition(
                transitionRange: (measuredXValid.Max(), measuredXValid.Max() + transitionWidth),
                baseFunc: polyFunc,
                targetFunc: polyFunc,
                mergedX: mergedX,
                mergedY: mergedY
            );
 
            return (mergedX, mergedY);
        }
 
        private void ApplyTransition(
            (double start, double end) transitionRange,
            Polynomial baseFunc,
            Polynomial targetFunc,
            double[] mergedX,
            double[] mergedY
        )
        {
            double start = transitionRange.start;
            double end = transitionRange.end;
 
            bool[] transitionMask = mergedX.Select(x => x >= start && x <= end).ToArray();
            double[] transitionX = mergedX.Where((x, i) => transitionMask[i]).ToArray();
 
            if (transitionX.Length == 0)
            {
                return;
            }
 
            // 计算混合权重
            double[] weights = transitionX.Select(x => (x - start) / (end - start)).ToArray();
 
            for (int i = 0; i < mergedX.Length; i++)
            {
                if (transitionMask[i])
                {
                    double x = mergedX[i];
                    double weight = weights[i];
                    mergedY[i] = (1 - weight) * baseFunc.Evaluate(x) + weight * targetFunc.Evaluate(x);
                }
            }
        }
 
        private Polynomial CreateSplinePolynomial()
        {
            double[] polyCoeff = Fit.Polynomial(splineX, splineY, polyDegree);
            return new Polynomial(polyCoeff);
        }
 
        private double[] SortAndUnique(double[] array)
        {
            Array.Sort(array);
            return array.Distinct().ToArray();
        }
    }
 
 
 
 
 
 
}