// // Math.NET Numerics, part of the Math.NET Project // http://numerics.mathdotnet.com // http://github.com/mathnet/mathnet-numerics // // Copyright (c) 2009-2013 Math.NET // // Permission is hereby granted, free of charge, to any person // obtaining a copy of this software and associated documentation // files (the "Software"), to deal in the Software without // restriction, including without limitation the rights to use, // copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the // Software is furnished to do so, subject to the following // conditions: // // The above copyright notice and this permission notice shall be // included in all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES // OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT // HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, // WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR // OTHER DEALINGS IN THE SOFTWARE. // using System; namespace IStation.Numerics.LinearAlgebra.Double.Factorization { using Complex = System.Numerics.Complex; /// /// Eigenvalues and eigenvectors of a real matrix. /// /// /// If A is symmetric, then A = V*D*V' where the eigenvalue matrix D is /// diagonal and the eigenvector matrix V is orthogonal. /// I.e. A = V*D*V' and V*VT=I. /// If A is not symmetric, then the eigenvalue matrix D is block diagonal /// with the real eigenvalues in 1-by-1 blocks and any complex eigenvalues, /// lambda + i*mu, in 2-by-2 blocks, [lambda, mu; -mu, lambda]. The /// columns of V represent the eigenvectors in the sense that A*V = V*D, /// i.e. A.Multiply(V) equals V.Multiply(D). The matrix V may be badly /// conditioned, or even singular, so the validity of the equation /// A = V*D*Inverse(V) depends upon V.Condition(). /// internal sealed class UserEvd : Evd { /// /// Initializes a new instance of the class. This object will compute the /// the eigenvalue decomposition when the constructor is called and cache it's decomposition. /// /// The matrix to factor. /// If it is known whether the matrix is symmetric or not the routine can skip checking it itself. /// If is null. /// If EVD algorithm failed to converge with matrix . public static UserEvd Create(Matrix matrix, Symmetricity symmetricity) { if (matrix.RowCount != matrix.ColumnCount) { throw new ArgumentException("Matrix must be square."); } var order = matrix.RowCount; // Initialize matrices for eigenvalues and eigenvectors var eigenVectors = Matrix.Build.SameAs(matrix, order, order, fullyMutable: true); var blockDiagonal = Matrix.Build.SameAs(matrix, order, order); var eigenValues = new LinearAlgebra.Complex.DenseVector(order); bool isSymmetric; switch (symmetricity) { case Symmetricity.Symmetric: case Symmetricity.Hermitian: isSymmetric = true; break; case Symmetricity.Asymmetric: isSymmetric = false; break; default: isSymmetric = matrix.IsSymmetric(); break; } var d = new double[order]; var e = new double[order]; if (isSymmetric) { matrix.CopyTo(eigenVectors); d = eigenVectors.Row(order - 1).ToArray(); SymmetricTridiagonalize(eigenVectors, d, e, order); SymmetricDiagonalize(eigenVectors, d, e, order); } else { var matrixH = matrix.ToArray(); NonsymmetricReduceToHessenberg(eigenVectors, matrixH, order); NonsymmetricReduceHessenberToRealSchur(eigenVectors, matrixH, d, e, order); } for (var i = 0; i < order; i++) { blockDiagonal.At(i, i, d[i]); if (e[i] > 0) { blockDiagonal.At(i, i + 1, e[i]); } else if (e[i] < 0) { blockDiagonal.At(i, i - 1, e[i]); } } for (var i = 0; i < order; i++) { eigenValues[i] = new Complex(d[i], e[i]); } return new UserEvd(eigenVectors, eigenValues, blockDiagonal, isSymmetric); } UserEvd(Matrix eigenVectors, Vector eigenValues, Matrix blockDiagonal, bool isSymmetric) : base(eigenVectors, eigenValues, blockDiagonal, isSymmetric) { } /// /// Symmetric Householder reduction to tridiagonal form. /// /// The eigen vectors to work on. /// Arrays for internal storage of real parts of eigenvalues /// Arrays for internal storage of imaginary parts of eigenvalues /// Order of initial matrix /// This is derived from the Algol procedures tred2 by /// Bowdler, Martin, Reinsch, and Wilkinson, Handbook for /// Auto. Comp., Vol.ii-Linear Algebra, and the corresponding /// Fortran subroutine in EISPACK. static void SymmetricTridiagonalize(Matrix eigenVectors, double[] d, double[] e, int order) { // Householder reduction to tridiagonal form. for (var i = order - 1; i > 0; i--) { // Scale to avoid under/overflow. var scale = 0.0; var h = 0.0; for (var k = 0; k < i; k++) { scale = scale + Math.Abs(d[k]); } if (scale == 0.0) { e[i] = d[i - 1]; for (var j = 0; j < i; j++) { d[j] = eigenVectors.At(i - 1, j); eigenVectors.At(i, j, 0.0); eigenVectors.At(j, i, 0.0); } } else { // Generate Householder vector. for (var k = 0; k < i; k++) { d[k] /= scale; h += d[k]*d[k]; } var f = d[i - 1]; var g = Math.Sqrt(h); if (f > 0) { g = -g; } e[i] = scale*g; h = h - (f*g); d[i - 1] = f - g; for (var j = 0; j < i; j++) { e[j] = 0.0; } // Apply similarity transformation to remaining columns. for (var j = 0; j < i; j++) { f = d[j]; eigenVectors.At(j, i, f); g = e[j] + (eigenVectors.At(j, j)*f); for (var k = j + 1; k <= i - 1; k++) { g += eigenVectors.At(k, j)*d[k]; e[k] += eigenVectors.At(k, j)*f; } e[j] = g; } f = 0.0; for (var j = 0; j < i; j++) { e[j] /= h; f += e[j]*d[j]; } var hh = f/(h + h); for (var j = 0; j < i; j++) { e[j] -= hh*d[j]; } for (var j = 0; j < i; j++) { f = d[j]; g = e[j]; for (var k = j; k <= i - 1; k++) { eigenVectors.At(k, j, eigenVectors.At(k, j) - (f*e[k]) - (g*d[k])); } d[j] = eigenVectors.At(i - 1, j); eigenVectors.At(i, j, 0.0); } } d[i] = h; } // Accumulate transformations. for (var i = 0; i < order - 1; i++) { eigenVectors.At(order - 1, i, eigenVectors.At(i, i)); eigenVectors.At(i, i, 1.0); var h = d[i + 1]; if (h != 0.0) { for (var k = 0; k <= i; k++) { d[k] = eigenVectors.At(k, i + 1)/h; } for (var j = 0; j <= i; j++) { var g = 0.0; for (var k = 0; k <= i; k++) { g += eigenVectors.At(k, i + 1)*eigenVectors.At(k, j); } for (var k = 0; k <= i; k++) { eigenVectors.At(k, j, eigenVectors.At(k, j) - g*d[k]); } } } for (var k = 0; k <= i; k++) { eigenVectors.At(k, i + 1, 0.0); } } for (var j = 0; j < order; j++) { d[j] = eigenVectors.At(order - 1, j); eigenVectors.At(order - 1, j, 0.0); } eigenVectors.At(order - 1, order - 1, 1.0); e[0] = 0.0; } /// /// Symmetric tridiagonal QL algorithm. /// /// The eigen vectors to work on. /// Arrays for internal storage of real parts of eigenvalues /// Arrays for internal storage of imaginary parts of eigenvalues /// Order of initial matrix /// This is derived from the Algol procedures tql2, by /// Bowdler, Martin, Reinsch, and Wilkinson, Handbook for /// Auto. Comp., Vol.ii-Linear Algebra, and the corresponding /// Fortran subroutine in EISPACK. /// static void SymmetricDiagonalize(Matrix eigenVectors, double[] d, double[] e, int order) { const int maxiter = 1000; for (var i = 1; i < order; i++) { e[i - 1] = e[i]; } e[order - 1] = 0.0; var f = 0.0; var tst1 = 0.0; var eps = Precision.DoublePrecision; for (var l = 0; l < order; l++) { // Find small subdiagonal element tst1 = Math.Max(tst1, Math.Abs(d[l]) + Math.Abs(e[l])); var m = l; while (m < order) { if (Math.Abs(e[m]) <= eps*tst1) { break; } m++; } // If m == l, d[l] is an eigenvalue, // otherwise, iterate. if (m > l) { var iter = 0; do { iter = iter + 1; // (Could check iteration count here.) // Compute implicit shift var g = d[l]; var p = (d[l + 1] - g)/(2.0*e[l]); var r = SpecialFunctions.Hypotenuse(p, 1.0); if (p < 0) { r = -r; } d[l] = e[l]/(p + r); d[l + 1] = e[l]*(p + r); var dl1 = d[l + 1]; var h = g - d[l]; for (var i = l + 2; i < order; i++) { d[i] -= h; } f = f + h; // Implicit QL transformation. p = d[m]; var c = 1.0; var c2 = c; var c3 = c; var el1 = e[l + 1]; var s = 0.0; var s2 = 0.0; for (var i = m - 1; i >= l; i--) { c3 = c2; c2 = c; s2 = s; g = c*e[i]; h = c*p; r = SpecialFunctions.Hypotenuse(p, e[i]); e[i + 1] = s*r; s = e[i]/r; c = p/r; p = (c*d[i]) - (s*g); d[i + 1] = h + (s*((c*g) + (s*d[i]))); // Accumulate transformation. for (var k = 0; k < order; k++) { h = eigenVectors.At(k, i + 1); eigenVectors.At(k, i + 1, (s*eigenVectors.At(k, i)) + (c*h)); eigenVectors.At(k, i, (c*eigenVectors.At(k, i)) - (s*h)); } } p = (-s)*s2*c3*el1*e[l]/dl1; e[l] = s*p; d[l] = c*p; // Check for convergence. If too many iterations have been performed, // throw exception that Convergence Failed if (iter >= maxiter) { throw new NonConvergenceException(); } } while (Math.Abs(e[l]) > eps*tst1); } d[l] = d[l] + f; e[l] = 0.0; } // Sort eigenvalues and corresponding vectors. for (var i = 0; i < order - 1; i++) { var k = i; var p = d[i]; for (var j = i + 1; j < order; j++) { if (d[j] < p) { k = j; p = d[j]; } } if (k != i) { d[k] = d[i]; d[i] = p; for (var j = 0; j < order; j++) { p = eigenVectors.At(j, i); eigenVectors.At(j, i, eigenVectors.At(j, k)); eigenVectors.At(j, k, p); } } } } /// /// Nonsymmetric reduction to Hessenberg form. /// /// The eigen vectors to work on. /// Array for internal storage of nonsymmetric Hessenberg form. /// Order of initial matrix /// This is derived from the Algol procedures orthes and ortran, /// by Martin and Wilkinson, Handbook for Auto. Comp., /// Vol.ii-Linear Algebra, and the corresponding /// Fortran subroutines in EISPACK. static void NonsymmetricReduceToHessenberg(Matrix eigenVectors, double[,] matrixH, int order) { var ort = new double[order]; for (var m = 1; m < order - 1; m++) { // Scale column. var scale = 0.0; for (var i = m; i < order; i++) { scale = scale + Math.Abs(matrixH[i, m - 1]); } if (scale != 0.0) { // Compute Householder transformation. var h = 0.0; for (var i = order - 1; i >= m; i--) { ort[i] = matrixH[i, m - 1]/scale; h += ort[i]*ort[i]; } var g = Math.Sqrt(h); if (ort[m] > 0) { g = -g; } h = h - (ort[m]*g); ort[m] = ort[m] - g; // Apply Householder similarity transformation // H = (I-u*u'/h)*H*(I-u*u')/h) for (var j = m; j < order; j++) { var f = 0.0; for (var i = order - 1; i >= m; i--) { f += ort[i]*matrixH[i, j]; } f = f/h; for (var i = m; i < order; i++) { matrixH[i, j] -= f*ort[i]; } } for (var i = 0; i < order; i++) { var f = 0.0; for (var j = order - 1; j >= m; j--) { f += ort[j]*matrixH[i, j]; } f = f/h; for (var j = m; j < order; j++) { matrixH[i, j] -= f*ort[j]; } } ort[m] = scale*ort[m]; matrixH[m, m - 1] = scale*g; } } // Accumulate transformations (Algol's ortran). for (var i = 0; i < order; i++) { for (var j = 0; j < order; j++) { eigenVectors.At(i, j, i == j ? 1.0 : 0.0); } } for (var m = order - 2; m >= 1; m--) { if (matrixH[m, m - 1] != 0.0) { for (var i = m + 1; i < order; i++) { ort[i] = matrixH[i, m - 1]; } for (var j = m; j < order; j++) { var g = 0.0; for (var i = m; i < order; i++) { g += ort[i]*eigenVectors.At(i, j); } // Double division avoids possible underflow g = (g/ort[m])/matrixH[m, m - 1]; for (var i = m; i < order; i++) { eigenVectors.At(i, j, eigenVectors.At(i, j) + g*ort[i]); } } } } } /// /// Nonsymmetric reduction from Hessenberg to real Schur form. /// /// The eigen vectors to work on. /// Array for internal storage of nonsymmetric Hessenberg form. /// Arrays for internal storage of real parts of eigenvalues /// Arrays for internal storage of imaginary parts of eigenvalues /// Order of initial matrix /// This is derived from the Algol procedure hqr2, /// by Martin and Wilkinson, Handbook for Auto. Comp., /// Vol.ii-Linear Algebra, and the corresponding /// Fortran subroutine in EISPACK. static void NonsymmetricReduceHessenberToRealSchur(Matrix eigenVectors, double[,] matrixH, double[] d, double[] e, int order) { // Initialize var n = order - 1; var eps = Precision.DoublePrecision; var exshift = 0.0; double p = 0, q = 0, r = 0, s = 0, z = 0, w, x, y; // Store roots isolated by balanc and compute matrix norm var norm = 0.0; for (var i = 0; i < order; i++) { for (var j = Math.Max(i - 1, 0); j < order; j++) { norm = norm + Math.Abs(matrixH[i, j]); } } // Outer loop over eigenvalue index var iter = 0; while (n >= 0) { // Look for single small sub-diagonal element var l = n; while (l > 0) { s = Math.Abs(matrixH[l - 1, l - 1]) + Math.Abs(matrixH[l, l]); if (s == 0.0) { s = norm; } if (Math.Abs(matrixH[l, l - 1]) < eps*s) { break; } l--; } // Check for convergence // One root found if (l == n) { matrixH[n, n] = matrixH[n, n] + exshift; d[n] = matrixH[n, n]; e[n] = 0.0; n--; iter = 0; // Two roots found } else if (l == n - 1) { w = matrixH[n, n - 1]*matrixH[n - 1, n]; p = (matrixH[n - 1, n - 1] - matrixH[n, n])/2.0; q = (p*p) + w; z = Math.Sqrt(Math.Abs(q)); matrixH[n, n] = matrixH[n, n] + exshift; matrixH[n - 1, n - 1] = matrixH[n - 1, n - 1] + exshift; x = matrixH[n, n]; // Real pair if (q >= 0) { if (p >= 0) { z = p + z; } else { z = p - z; } d[n - 1] = x + z; d[n] = d[n - 1]; if (z != 0.0) { d[n] = x - (w/z); } e[n - 1] = 0.0; e[n] = 0.0; x = matrixH[n, n - 1]; s = Math.Abs(x) + Math.Abs(z); p = x/s; q = z/s; r = Math.Sqrt((p*p) + (q*q)); p = p/r; q = q/r; // Row modification for (var j = n - 1; j < order; j++) { z = matrixH[n - 1, j]; matrixH[n - 1, j] = (q*z) + (p*matrixH[n, j]); matrixH[n, j] = (q*matrixH[n, j]) - (p*z); } // Column modification for (var i = 0; i <= n; i++) { z = matrixH[i, n - 1]; matrixH[i, n - 1] = (q*z) + (p*matrixH[i, n]); matrixH[i, n] = (q*matrixH[i, n]) - (p*z); } // Accumulate transformations for (var i = 0; i < order; i++) { z = eigenVectors.At(i, n - 1); eigenVectors.At(i, n - 1, (q*z) + (p*eigenVectors.At(i, n))); eigenVectors.At(i, n, (q*eigenVectors.At(i, n)) - (p*z)); } // Complex pair } else { d[n - 1] = x + p; d[n] = x + p; e[n - 1] = z; e[n] = -z; } n = n - 2; iter = 0; // No convergence yet } else { // Form shift x = matrixH[n, n]; y = 0.0; w = 0.0; if (l < n) { y = matrixH[n - 1, n - 1]; w = matrixH[n, n - 1]*matrixH[n - 1, n]; } // Wilkinson's original ad hoc shift if (iter == 10) { exshift += x; for (var i = 0; i <= n; i++) { matrixH[i, i] -= x; } s = Math.Abs(matrixH[n, n - 1]) + Math.Abs(matrixH[n - 1, n - 2]); x = y = 0.75*s; w = (-0.4375)*s*s; } // MATLAB's new ad hoc shift if (iter == 30) { s = (y - x)/2.0; s = (s*s) + w; if (s > 0) { s = Math.Sqrt(s); if (y < x) { s = -s; } s = x - (w/(((y - x)/2.0) + s)); for (var i = 0; i <= n; i++) { matrixH[i, i] -= s; } exshift += s; x = y = w = 0.964; } } iter = iter + 1; // (Could check iteration count here.) // Look for two consecutive small sub-diagonal elements var m = n - 2; while (m >= l) { z = matrixH[m, m]; r = x - z; s = y - z; p = (((r*s) - w)/matrixH[m + 1, m]) + matrixH[m, m + 1]; q = matrixH[m + 1, m + 1] - z - r - s; r = matrixH[m + 2, m + 1]; s = Math.Abs(p) + Math.Abs(q) + Math.Abs(r); p = p/s; q = q/s; r = r/s; if (m == l) { break; } if (Math.Abs(matrixH[m, m - 1])*(Math.Abs(q) + Math.Abs(r)) < eps*(Math.Abs(p)*(Math.Abs(matrixH[m - 1, m - 1]) + Math.Abs(z) + Math.Abs(matrixH[m + 1, m + 1])))) { break; } m--; } for (var i = m + 2; i <= n; i++) { matrixH[i, i - 2] = 0.0; if (i > m + 2) { matrixH[i, i - 3] = 0.0; } } // Double QR step involving rows l:n and columns m:n for (var k = m; k <= n - 1; k++) { bool notlast = k != n - 1; if (k != m) { p = matrixH[k, k - 1]; q = matrixH[k + 1, k - 1]; r = notlast ? matrixH[k + 2, k - 1] : 0.0; x = Math.Abs(p) + Math.Abs(q) + Math.Abs(r); if (x != 0.0) { p = p/x; q = q/x; r = r/x; } } if (x == 0.0) { break; } s = Math.Sqrt((p*p) + (q*q) + (r*r)); if (p < 0) { s = -s; } if (s != 0.0) { if (k != m) { matrixH[k, k - 1] = (-s)*x; } else if (l != m) { matrixH[k, k - 1] = -matrixH[k, k - 1]; } p = p + s; x = p/s; y = q/s; z = r/s; q = q/p; r = r/p; // Row modification for (var j = k; j < order; j++) { p = matrixH[k, j] + (q*matrixH[k + 1, j]); if (notlast) { p = p + (r*matrixH[k + 2, j]); matrixH[k + 2, j] = matrixH[k + 2, j] - (p*z); } matrixH[k, j] = matrixH[k, j] - (p*x); matrixH[k + 1, j] = matrixH[k + 1, j] - (p*y); } // Column modification for (var i = 0; i <= Math.Min(n, k + 3); i++) { p = (x*matrixH[i, k]) + (y*matrixH[i, k + 1]); if (notlast) { p = p + (z*matrixH[i, k + 2]); matrixH[i, k + 2] = matrixH[i, k + 2] - (p*r); } matrixH[i, k] = matrixH[i, k] - p; matrixH[i, k + 1] = matrixH[i, k + 1] - (p*q); } // Accumulate transformations for (var i = 0; i < order; i++) { p = (x*eigenVectors.At(i, k)) + (y*eigenVectors.At(i, k + 1)); if (notlast) { p = p + (z*eigenVectors.At(i, k + 2)); eigenVectors.At(i, k + 2, eigenVectors.At(i, k + 2) - (p*r)); } eigenVectors.At(i, k, eigenVectors.At(i, k) - p); eigenVectors.At(i, k + 1, eigenVectors.At(i, k + 1) - (p*q)); } } // (s != 0) } // k loop } // check convergence } // while (n >= low) // Backsubstitute to find vectors of upper triangular form if (norm == 0.0) { return; } for (n = order - 1; n >= 0; n--) { double t; p = d[n]; q = e[n]; // Real vector if (q == 0.0) { var l = n; matrixH[n, n] = 1.0; for (var i = n - 1; i >= 0; i--) { w = matrixH[i, i] - p; r = 0.0; for (var j = l; j <= n; j++) { r = r + (matrixH[i, j]*matrixH[j, n]); } if (e[i] < 0.0) { z = w; s = r; } else { l = i; if (e[i] == 0.0) { if (w != 0.0) { matrixH[i, n] = (-r)/w; } else { matrixH[i, n] = (-r)/(eps*norm); } // Solve real equations } else { x = matrixH[i, i + 1]; y = matrixH[i + 1, i]; q = ((d[i] - p)*(d[i] - p)) + (e[i]*e[i]); t = ((x*s) - (z*r))/q; matrixH[i, n] = t; if (Math.Abs(x) > Math.Abs(z)) { matrixH[i + 1, n] = (-r - (w*t))/x; } else { matrixH[i + 1, n] = (-s - (y*t))/z; } } // Overflow control t = Math.Abs(matrixH[i, n]); if ((eps*t)*t > 1) { for (var j = i; j <= n; j++) { matrixH[j, n] = matrixH[j, n]/t; } } } } // Complex vector } else if (q < 0) { var l = n - 1; // Last vector component imaginary so matrix is triangular if (Math.Abs(matrixH[n, n - 1]) > Math.Abs(matrixH[n - 1, n])) { matrixH[n - 1, n - 1] = q/matrixH[n, n - 1]; matrixH[n - 1, n] = (-(matrixH[n, n] - p))/matrixH[n, n - 1]; } else { var res = Cdiv(0.0, -matrixH[n - 1, n], matrixH[n - 1, n - 1] - p, q); matrixH[n - 1, n - 1] = res.Real; matrixH[n - 1, n] = res.Imaginary; } matrixH[n, n - 1] = 0.0; matrixH[n, n] = 1.0; for (var i = n - 2; i >= 0; i--) { double ra = 0.0; double sa = 0.0; for (var j = l; j <= n; j++) { ra = ra + (matrixH[i, j]*matrixH[j, n - 1]); sa = sa + (matrixH[i, j]*matrixH[j, n]); } w = matrixH[i, i] - p; if (e[i] < 0.0) { z = w; r = ra; s = sa; } else { l = i; if (e[i] == 0.0) { var res = Cdiv(-ra, -sa, w, q); matrixH[i, n - 1] = res.Real; matrixH[i, n] = res.Imaginary; } else { // Solve complex equations x = matrixH[i, i + 1]; y = matrixH[i + 1, i]; double vr = ((d[i] - p)*(d[i] - p)) + (e[i]*e[i]) - (q*q); double vi = (d[i] - p)*2.0*q; if ((vr == 0.0) && (vi == 0.0)) { vr = eps*norm*(Math.Abs(w) + Math.Abs(q) + Math.Abs(x) + Math.Abs(y) + Math.Abs(z)); } var res = Cdiv((x*r) - (z*ra) + (q*sa), (x*s) - (z*sa) - (q*ra), vr, vi); matrixH[i, n - 1] = res.Real; matrixH[i, n] = res.Imaginary; if (Math.Abs(x) > (Math.Abs(z) + Math.Abs(q))) { matrixH[i + 1, n - 1] = (-ra - (w*matrixH[i, n - 1]) + (q*matrixH[i, n]))/x; matrixH[i + 1, n] = (-sa - (w*matrixH[i, n]) - (q*matrixH[i, n - 1]))/x; } else { res = Cdiv(-r - (y*matrixH[i, n - 1]), -s - (y*matrixH[i, n]), z, q); matrixH[i + 1, n - 1] = res.Real; matrixH[i + 1, n] = res.Imaginary; } } // Overflow control t = Math.Max(Math.Abs(matrixH[i, n - 1]), Math.Abs(matrixH[i, n])); if ((eps*t)*t > 1) { for (var j = i; j <= n; j++) { matrixH[j, n - 1] = matrixH[j, n - 1]/t; matrixH[j, n] = matrixH[j, n]/t; } } } } } } // Back transformation to get eigenvectors of original matrix for (var j = order - 1; j >= 0; j--) { for (var i = 0; i < order; i++) { z = 0.0; for (var k = 0; k <= j; k++) { z = z + (eigenVectors.At(i, k)*matrixH[k, j]); } eigenVectors.At(i, j, z); } } } /// /// Complex scalar division X/Y. /// /// Real part of X /// Imaginary part of X /// Real part of Y /// Imaginary part of Y /// Division result as a number. static Complex Cdiv(double xreal, double ximag, double yreal, double yimag) { if (Math.Abs(yimag) < Math.Abs(yreal)) { return new Complex((xreal + (ximag*(yimag/yreal)))/(yreal + (yimag*(yimag/yreal))), (ximag - (xreal*(yimag/yreal)))/(yreal + (yimag*(yimag/yreal)))); } return new Complex((ximag + (xreal*(yreal/yimag)))/(yimag + (yreal*(yreal/yimag))), (-xreal + (ximag*(yreal/yimag)))/(yimag + (yreal*(yreal/yimag)))); } /// /// Solves a system of linear equations, AX = B, with A SVD factorized. /// /// The right hand side , B. /// The left hand side , X. public override void Solve(Matrix input, Matrix result) { // The solution X should have the same number of columns as B if (input.ColumnCount != result.ColumnCount) { throw new ArgumentException("Matrix column dimensions must agree."); } // The dimension compatibility conditions for X = A\B require the two matrices A and B to have the same number of rows if (EigenValues.Count != input.RowCount) { throw new ArgumentException("Matrix row dimensions must agree."); } // The solution X row dimension is equal to the column dimension of A if (EigenValues.Count != result.RowCount) { throw new ArgumentException("Matrix column dimensions must agree."); } if (IsSymmetric) { var order = EigenValues.Count; var tmp = new double[order]; for (var k = 0; k < order; k++) { for (var j = 0; j < order; j++) { double value = 0; if (j < order) { for (var i = 0; i < order; i++) { value += EigenVectors.At(i, j)*input.At(i, k); } value /= EigenValues[j].Real; } tmp[j] = value; } for (var j = 0; j < order; j++) { double value = 0; for (var i = 0; i < order; i++) { value += EigenVectors.At(j, i)*tmp[i]; } result.At(j, k, value); } } } else { throw new ArgumentException("Matrix must be symmetric."); } } /// /// Solves a system of linear equations, Ax = b, with A EVD factorized. /// /// The right hand side vector, b. /// The left hand side , x. public override void Solve(Vector input, Vector result) { // Ax=b where A is an m x m matrix // Check that b is a column vector with m entries if (EigenValues.Count != input.Count) { throw new ArgumentException("All vectors must have the same dimensionality."); } // Check that x is a column vector with n entries if (EigenValues.Count != result.Count) { throw new ArgumentException("Matrix dimensions must agree."); } if (IsSymmetric) { // Symmetric case -> x = V * inv(λ) * VT * b; var order = EigenValues.Count; var tmp = new double[order]; double value; for (var j = 0; j < order; j++) { value = 0; if (j < order) { for (var i = 0; i < order; i++) { value += EigenVectors.At(i, j)*input[i]; } value /= EigenValues[j].Real; } tmp[j] = value; } for (var j = 0; j < order; j++) { value = 0; for (int i = 0; i < order; i++) { value += EigenVectors.At(j, i)*tmp[i]; } result[j] = value; } } else { throw new ArgumentException("Matrix must be symmetric."); } } } }