//
// Math.NET Numerics, part of the Math.NET Project
// http://numerics.mathdotnet.com
// http://github.com/mathnet/mathnet-numerics
//
// Copyright (c) 2009-2013 Math.NET
//
// Permission is hereby granted, free of charge, to any person
// obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without
// restriction, including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following
// conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
//
using System;
namespace IStation.Numerics.LinearAlgebra.Double.Factorization
{
using Complex = System.Numerics.Complex;
///
/// Eigenvalues and eigenvectors of a real matrix.
///
///
/// If A is symmetric, then A = V*D*V' where the eigenvalue matrix D is
/// diagonal and the eigenvector matrix V is orthogonal.
/// I.e. A = V*D*V' and V*VT=I.
/// If A is not symmetric, then the eigenvalue matrix D is block diagonal
/// with the real eigenvalues in 1-by-1 blocks and any complex eigenvalues,
/// lambda + i*mu, in 2-by-2 blocks, [lambda, mu; -mu, lambda]. The
/// columns of V represent the eigenvectors in the sense that A*V = V*D,
/// i.e. A.Multiply(V) equals V.Multiply(D). The matrix V may be badly
/// conditioned, or even singular, so the validity of the equation
/// A = V*D*Inverse(V) depends upon V.Condition().
///
internal sealed class UserEvd : Evd
{
///
/// Initializes a new instance of the class. This object will compute the
/// the eigenvalue decomposition when the constructor is called and cache it's decomposition.
///
/// The matrix to factor.
/// If it is known whether the matrix is symmetric or not the routine can skip checking it itself.
/// If is null.
/// If EVD algorithm failed to converge with matrix .
public static UserEvd Create(Matrix matrix, Symmetricity symmetricity)
{
if (matrix.RowCount != matrix.ColumnCount)
{
throw new ArgumentException("Matrix must be square.");
}
var order = matrix.RowCount;
// Initialize matrices for eigenvalues and eigenvectors
var eigenVectors = Matrix.Build.SameAs(matrix, order, order, fullyMutable: true);
var blockDiagonal = Matrix.Build.SameAs(matrix, order, order);
var eigenValues = new LinearAlgebra.Complex.DenseVector(order);
bool isSymmetric;
switch (symmetricity)
{
case Symmetricity.Symmetric:
case Symmetricity.Hermitian:
isSymmetric = true;
break;
case Symmetricity.Asymmetric:
isSymmetric = false;
break;
default:
isSymmetric = matrix.IsSymmetric();
break;
}
var d = new double[order];
var e = new double[order];
if (isSymmetric)
{
matrix.CopyTo(eigenVectors);
d = eigenVectors.Row(order - 1).ToArray();
SymmetricTridiagonalize(eigenVectors, d, e, order);
SymmetricDiagonalize(eigenVectors, d, e, order);
}
else
{
var matrixH = matrix.ToArray();
NonsymmetricReduceToHessenberg(eigenVectors, matrixH, order);
NonsymmetricReduceHessenberToRealSchur(eigenVectors, matrixH, d, e, order);
}
for (var i = 0; i < order; i++)
{
blockDiagonal.At(i, i, d[i]);
if (e[i] > 0)
{
blockDiagonal.At(i, i + 1, e[i]);
}
else if (e[i] < 0)
{
blockDiagonal.At(i, i - 1, e[i]);
}
}
for (var i = 0; i < order; i++)
{
eigenValues[i] = new Complex(d[i], e[i]);
}
return new UserEvd(eigenVectors, eigenValues, blockDiagonal, isSymmetric);
}
UserEvd(Matrix eigenVectors, Vector eigenValues, Matrix blockDiagonal, bool isSymmetric)
: base(eigenVectors, eigenValues, blockDiagonal, isSymmetric)
{
}
///
/// Symmetric Householder reduction to tridiagonal form.
///
/// The eigen vectors to work on.
/// Arrays for internal storage of real parts of eigenvalues
/// Arrays for internal storage of imaginary parts of eigenvalues
/// Order of initial matrix
/// This is derived from the Algol procedures tred2 by
/// Bowdler, Martin, Reinsch, and Wilkinson, Handbook for
/// Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
/// Fortran subroutine in EISPACK.
static void SymmetricTridiagonalize(Matrix eigenVectors, double[] d, double[] e, int order)
{
// Householder reduction to tridiagonal form.
for (var i = order - 1; i > 0; i--)
{
// Scale to avoid under/overflow.
var scale = 0.0;
var h = 0.0;
for (var k = 0; k < i; k++)
{
scale = scale + Math.Abs(d[k]);
}
if (scale == 0.0)
{
e[i] = d[i - 1];
for (var j = 0; j < i; j++)
{
d[j] = eigenVectors.At(i - 1, j);
eigenVectors.At(i, j, 0.0);
eigenVectors.At(j, i, 0.0);
}
}
else
{
// Generate Householder vector.
for (var k = 0; k < i; k++)
{
d[k] /= scale;
h += d[k]*d[k];
}
var f = d[i - 1];
var g = Math.Sqrt(h);
if (f > 0)
{
g = -g;
}
e[i] = scale*g;
h = h - (f*g);
d[i - 1] = f - g;
for (var j = 0; j < i; j++)
{
e[j] = 0.0;
}
// Apply similarity transformation to remaining columns.
for (var j = 0; j < i; j++)
{
f = d[j];
eigenVectors.At(j, i, f);
g = e[j] + (eigenVectors.At(j, j)*f);
for (var k = j + 1; k <= i - 1; k++)
{
g += eigenVectors.At(k, j)*d[k];
e[k] += eigenVectors.At(k, j)*f;
}
e[j] = g;
}
f = 0.0;
for (var j = 0; j < i; j++)
{
e[j] /= h;
f += e[j]*d[j];
}
var hh = f/(h + h);
for (var j = 0; j < i; j++)
{
e[j] -= hh*d[j];
}
for (var j = 0; j < i; j++)
{
f = d[j];
g = e[j];
for (var k = j; k <= i - 1; k++)
{
eigenVectors.At(k, j, eigenVectors.At(k, j) - (f*e[k]) - (g*d[k]));
}
d[j] = eigenVectors.At(i - 1, j);
eigenVectors.At(i, j, 0.0);
}
}
d[i] = h;
}
// Accumulate transformations.
for (var i = 0; i < order - 1; i++)
{
eigenVectors.At(order - 1, i, eigenVectors.At(i, i));
eigenVectors.At(i, i, 1.0);
var h = d[i + 1];
if (h != 0.0)
{
for (var k = 0; k <= i; k++)
{
d[k] = eigenVectors.At(k, i + 1)/h;
}
for (var j = 0; j <= i; j++)
{
var g = 0.0;
for (var k = 0; k <= i; k++)
{
g += eigenVectors.At(k, i + 1)*eigenVectors.At(k, j);
}
for (var k = 0; k <= i; k++)
{
eigenVectors.At(k, j, eigenVectors.At(k, j) - g*d[k]);
}
}
}
for (var k = 0; k <= i; k++)
{
eigenVectors.At(k, i + 1, 0.0);
}
}
for (var j = 0; j < order; j++)
{
d[j] = eigenVectors.At(order - 1, j);
eigenVectors.At(order - 1, j, 0.0);
}
eigenVectors.At(order - 1, order - 1, 1.0);
e[0] = 0.0;
}
///
/// Symmetric tridiagonal QL algorithm.
///
/// The eigen vectors to work on.
/// Arrays for internal storage of real parts of eigenvalues
/// Arrays for internal storage of imaginary parts of eigenvalues
/// Order of initial matrix
/// This is derived from the Algol procedures tql2, by
/// Bowdler, Martin, Reinsch, and Wilkinson, Handbook for
/// Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
/// Fortran subroutine in EISPACK.
///
static void SymmetricDiagonalize(Matrix eigenVectors, double[] d, double[] e, int order)
{
const int maxiter = 1000;
for (var i = 1; i < order; i++)
{
e[i - 1] = e[i];
}
e[order - 1] = 0.0;
var f = 0.0;
var tst1 = 0.0;
var eps = Precision.DoublePrecision;
for (var l = 0; l < order; l++)
{
// Find small subdiagonal element
tst1 = Math.Max(tst1, Math.Abs(d[l]) + Math.Abs(e[l]));
var m = l;
while (m < order)
{
if (Math.Abs(e[m]) <= eps*tst1)
{
break;
}
m++;
}
// If m == l, d[l] is an eigenvalue,
// otherwise, iterate.
if (m > l)
{
var iter = 0;
do
{
iter = iter + 1; // (Could check iteration count here.)
// Compute implicit shift
var g = d[l];
var p = (d[l + 1] - g)/(2.0*e[l]);
var r = SpecialFunctions.Hypotenuse(p, 1.0);
if (p < 0)
{
r = -r;
}
d[l] = e[l]/(p + r);
d[l + 1] = e[l]*(p + r);
var dl1 = d[l + 1];
var h = g - d[l];
for (var i = l + 2; i < order; i++)
{
d[i] -= h;
}
f = f + h;
// Implicit QL transformation.
p = d[m];
var c = 1.0;
var c2 = c;
var c3 = c;
var el1 = e[l + 1];
var s = 0.0;
var s2 = 0.0;
for (var i = m - 1; i >= l; i--)
{
c3 = c2;
c2 = c;
s2 = s;
g = c*e[i];
h = c*p;
r = SpecialFunctions.Hypotenuse(p, e[i]);
e[i + 1] = s*r;
s = e[i]/r;
c = p/r;
p = (c*d[i]) - (s*g);
d[i + 1] = h + (s*((c*g) + (s*d[i])));
// Accumulate transformation.
for (var k = 0; k < order; k++)
{
h = eigenVectors.At(k, i + 1);
eigenVectors.At(k, i + 1, (s*eigenVectors.At(k, i)) + (c*h));
eigenVectors.At(k, i, (c*eigenVectors.At(k, i)) - (s*h));
}
}
p = (-s)*s2*c3*el1*e[l]/dl1;
e[l] = s*p;
d[l] = c*p;
// Check for convergence. If too many iterations have been performed,
// throw exception that Convergence Failed
if (iter >= maxiter)
{
throw new NonConvergenceException();
}
} while (Math.Abs(e[l]) > eps*tst1);
}
d[l] = d[l] + f;
e[l] = 0.0;
}
// Sort eigenvalues and corresponding vectors.
for (var i = 0; i < order - 1; i++)
{
var k = i;
var p = d[i];
for (var j = i + 1; j < order; j++)
{
if (d[j] < p)
{
k = j;
p = d[j];
}
}
if (k != i)
{
d[k] = d[i];
d[i] = p;
for (var j = 0; j < order; j++)
{
p = eigenVectors.At(j, i);
eigenVectors.At(j, i, eigenVectors.At(j, k));
eigenVectors.At(j, k, p);
}
}
}
}
///
/// Nonsymmetric reduction to Hessenberg form.
///
/// The eigen vectors to work on.
/// Array for internal storage of nonsymmetric Hessenberg form.
/// Order of initial matrix
/// This is derived from the Algol procedures orthes and ortran,
/// by Martin and Wilkinson, Handbook for Auto. Comp.,
/// Vol.ii-Linear Algebra, and the corresponding
/// Fortran subroutines in EISPACK.
static void NonsymmetricReduceToHessenberg(Matrix eigenVectors, double[,] matrixH, int order)
{
var ort = new double[order];
for (var m = 1; m < order - 1; m++)
{
// Scale column.
var scale = 0.0;
for (var i = m; i < order; i++)
{
scale = scale + Math.Abs(matrixH[i, m - 1]);
}
if (scale != 0.0)
{
// Compute Householder transformation.
var h = 0.0;
for (var i = order - 1; i >= m; i--)
{
ort[i] = matrixH[i, m - 1]/scale;
h += ort[i]*ort[i];
}
var g = Math.Sqrt(h);
if (ort[m] > 0)
{
g = -g;
}
h = h - (ort[m]*g);
ort[m] = ort[m] - g;
// Apply Householder similarity transformation
// H = (I-u*u'/h)*H*(I-u*u')/h)
for (var j = m; j < order; j++)
{
var f = 0.0;
for (var i = order - 1; i >= m; i--)
{
f += ort[i]*matrixH[i, j];
}
f = f/h;
for (var i = m; i < order; i++)
{
matrixH[i, j] -= f*ort[i];
}
}
for (var i = 0; i < order; i++)
{
var f = 0.0;
for (var j = order - 1; j >= m; j--)
{
f += ort[j]*matrixH[i, j];
}
f = f/h;
for (var j = m; j < order; j++)
{
matrixH[i, j] -= f*ort[j];
}
}
ort[m] = scale*ort[m];
matrixH[m, m - 1] = scale*g;
}
}
// Accumulate transformations (Algol's ortran).
for (var i = 0; i < order; i++)
{
for (var j = 0; j < order; j++)
{
eigenVectors.At(i, j, i == j ? 1.0 : 0.0);
}
}
for (var m = order - 2; m >= 1; m--)
{
if (matrixH[m, m - 1] != 0.0)
{
for (var i = m + 1; i < order; i++)
{
ort[i] = matrixH[i, m - 1];
}
for (var j = m; j < order; j++)
{
var g = 0.0;
for (var i = m; i < order; i++)
{
g += ort[i]*eigenVectors.At(i, j);
}
// Double division avoids possible underflow
g = (g/ort[m])/matrixH[m, m - 1];
for (var i = m; i < order; i++)
{
eigenVectors.At(i, j, eigenVectors.At(i, j) + g*ort[i]);
}
}
}
}
}
///
/// Nonsymmetric reduction from Hessenberg to real Schur form.
///
/// The eigen vectors to work on.
/// Array for internal storage of nonsymmetric Hessenberg form.
/// Arrays for internal storage of real parts of eigenvalues
/// Arrays for internal storage of imaginary parts of eigenvalues
/// Order of initial matrix
/// This is derived from the Algol procedure hqr2,
/// by Martin and Wilkinson, Handbook for Auto. Comp.,
/// Vol.ii-Linear Algebra, and the corresponding
/// Fortran subroutine in EISPACK.
static void NonsymmetricReduceHessenberToRealSchur(Matrix eigenVectors, double[,] matrixH, double[] d, double[] e, int order)
{
// Initialize
var n = order - 1;
var eps = Precision.DoublePrecision;
var exshift = 0.0;
double p = 0, q = 0, r = 0, s = 0, z = 0, w, x, y;
// Store roots isolated by balanc and compute matrix norm
var norm = 0.0;
for (var i = 0; i < order; i++)
{
for (var j = Math.Max(i - 1, 0); j < order; j++)
{
norm = norm + Math.Abs(matrixH[i, j]);
}
}
// Outer loop over eigenvalue index
var iter = 0;
while (n >= 0)
{
// Look for single small sub-diagonal element
var l = n;
while (l > 0)
{
s = Math.Abs(matrixH[l - 1, l - 1]) + Math.Abs(matrixH[l, l]);
if (s == 0.0)
{
s = norm;
}
if (Math.Abs(matrixH[l, l - 1]) < eps*s)
{
break;
}
l--;
}
// Check for convergence
// One root found
if (l == n)
{
matrixH[n, n] = matrixH[n, n] + exshift;
d[n] = matrixH[n, n];
e[n] = 0.0;
n--;
iter = 0;
// Two roots found
}
else if (l == n - 1)
{
w = matrixH[n, n - 1]*matrixH[n - 1, n];
p = (matrixH[n - 1, n - 1] - matrixH[n, n])/2.0;
q = (p*p) + w;
z = Math.Sqrt(Math.Abs(q));
matrixH[n, n] = matrixH[n, n] + exshift;
matrixH[n - 1, n - 1] = matrixH[n - 1, n - 1] + exshift;
x = matrixH[n, n];
// Real pair
if (q >= 0)
{
if (p >= 0)
{
z = p + z;
}
else
{
z = p - z;
}
d[n - 1] = x + z;
d[n] = d[n - 1];
if (z != 0.0)
{
d[n] = x - (w/z);
}
e[n - 1] = 0.0;
e[n] = 0.0;
x = matrixH[n, n - 1];
s = Math.Abs(x) + Math.Abs(z);
p = x/s;
q = z/s;
r = Math.Sqrt((p*p) + (q*q));
p = p/r;
q = q/r;
// Row modification
for (var j = n - 1; j < order; j++)
{
z = matrixH[n - 1, j];
matrixH[n - 1, j] = (q*z) + (p*matrixH[n, j]);
matrixH[n, j] = (q*matrixH[n, j]) - (p*z);
}
// Column modification
for (var i = 0; i <= n; i++)
{
z = matrixH[i, n - 1];
matrixH[i, n - 1] = (q*z) + (p*matrixH[i, n]);
matrixH[i, n] = (q*matrixH[i, n]) - (p*z);
}
// Accumulate transformations
for (var i = 0; i < order; i++)
{
z = eigenVectors.At(i, n - 1);
eigenVectors.At(i, n - 1, (q*z) + (p*eigenVectors.At(i, n)));
eigenVectors.At(i, n, (q*eigenVectors.At(i, n)) - (p*z));
}
// Complex pair
}
else
{
d[n - 1] = x + p;
d[n] = x + p;
e[n - 1] = z;
e[n] = -z;
}
n = n - 2;
iter = 0;
// No convergence yet
}
else
{
// Form shift
x = matrixH[n, n];
y = 0.0;
w = 0.0;
if (l < n)
{
y = matrixH[n - 1, n - 1];
w = matrixH[n, n - 1]*matrixH[n - 1, n];
}
// Wilkinson's original ad hoc shift
if (iter == 10)
{
exshift += x;
for (var i = 0; i <= n; i++)
{
matrixH[i, i] -= x;
}
s = Math.Abs(matrixH[n, n - 1]) + Math.Abs(matrixH[n - 1, n - 2]);
x = y = 0.75*s;
w = (-0.4375)*s*s;
}
// MATLAB's new ad hoc shift
if (iter == 30)
{
s = (y - x)/2.0;
s = (s*s) + w;
if (s > 0)
{
s = Math.Sqrt(s);
if (y < x)
{
s = -s;
}
s = x - (w/(((y - x)/2.0) + s));
for (var i = 0; i <= n; i++)
{
matrixH[i, i] -= s;
}
exshift += s;
x = y = w = 0.964;
}
}
iter = iter + 1; // (Could check iteration count here.)
// Look for two consecutive small sub-diagonal elements
var m = n - 2;
while (m >= l)
{
z = matrixH[m, m];
r = x - z;
s = y - z;
p = (((r*s) - w)/matrixH[m + 1, m]) + matrixH[m, m + 1];
q = matrixH[m + 1, m + 1] - z - r - s;
r = matrixH[m + 2, m + 1];
s = Math.Abs(p) + Math.Abs(q) + Math.Abs(r);
p = p/s;
q = q/s;
r = r/s;
if (m == l)
{
break;
}
if (Math.Abs(matrixH[m, m - 1])*(Math.Abs(q) + Math.Abs(r)) < eps*(Math.Abs(p)*(Math.Abs(matrixH[m - 1, m - 1]) + Math.Abs(z) + Math.Abs(matrixH[m + 1, m + 1]))))
{
break;
}
m--;
}
for (var i = m + 2; i <= n; i++)
{
matrixH[i, i - 2] = 0.0;
if (i > m + 2)
{
matrixH[i, i - 3] = 0.0;
}
}
// Double QR step involving rows l:n and columns m:n
for (var k = m; k <= n - 1; k++)
{
bool notlast = k != n - 1;
if (k != m)
{
p = matrixH[k, k - 1];
q = matrixH[k + 1, k - 1];
r = notlast ? matrixH[k + 2, k - 1] : 0.0;
x = Math.Abs(p) + Math.Abs(q) + Math.Abs(r);
if (x != 0.0)
{
p = p/x;
q = q/x;
r = r/x;
}
}
if (x == 0.0)
{
break;
}
s = Math.Sqrt((p*p) + (q*q) + (r*r));
if (p < 0)
{
s = -s;
}
if (s != 0.0)
{
if (k != m)
{
matrixH[k, k - 1] = (-s)*x;
}
else if (l != m)
{
matrixH[k, k - 1] = -matrixH[k, k - 1];
}
p = p + s;
x = p/s;
y = q/s;
z = r/s;
q = q/p;
r = r/p;
// Row modification
for (var j = k; j < order; j++)
{
p = matrixH[k, j] + (q*matrixH[k + 1, j]);
if (notlast)
{
p = p + (r*matrixH[k + 2, j]);
matrixH[k + 2, j] = matrixH[k + 2, j] - (p*z);
}
matrixH[k, j] = matrixH[k, j] - (p*x);
matrixH[k + 1, j] = matrixH[k + 1, j] - (p*y);
}
// Column modification
for (var i = 0; i <= Math.Min(n, k + 3); i++)
{
p = (x*matrixH[i, k]) + (y*matrixH[i, k + 1]);
if (notlast)
{
p = p + (z*matrixH[i, k + 2]);
matrixH[i, k + 2] = matrixH[i, k + 2] - (p*r);
}
matrixH[i, k] = matrixH[i, k] - p;
matrixH[i, k + 1] = matrixH[i, k + 1] - (p*q);
}
// Accumulate transformations
for (var i = 0; i < order; i++)
{
p = (x*eigenVectors.At(i, k)) + (y*eigenVectors.At(i, k + 1));
if (notlast)
{
p = p + (z*eigenVectors.At(i, k + 2));
eigenVectors.At(i, k + 2, eigenVectors.At(i, k + 2) - (p*r));
}
eigenVectors.At(i, k, eigenVectors.At(i, k) - p);
eigenVectors.At(i, k + 1, eigenVectors.At(i, k + 1) - (p*q));
}
} // (s != 0)
} // k loop
} // check convergence
} // while (n >= low)
// Backsubstitute to find vectors of upper triangular form
if (norm == 0.0)
{
return;
}
for (n = order - 1; n >= 0; n--)
{
double t;
p = d[n];
q = e[n];
// Real vector
if (q == 0.0)
{
var l = n;
matrixH[n, n] = 1.0;
for (var i = n - 1; i >= 0; i--)
{
w = matrixH[i, i] - p;
r = 0.0;
for (var j = l; j <= n; j++)
{
r = r + (matrixH[i, j]*matrixH[j, n]);
}
if (e[i] < 0.0)
{
z = w;
s = r;
}
else
{
l = i;
if (e[i] == 0.0)
{
if (w != 0.0)
{
matrixH[i, n] = (-r)/w;
}
else
{
matrixH[i, n] = (-r)/(eps*norm);
}
// Solve real equations
}
else
{
x = matrixH[i, i + 1];
y = matrixH[i + 1, i];
q = ((d[i] - p)*(d[i] - p)) + (e[i]*e[i]);
t = ((x*s) - (z*r))/q;
matrixH[i, n] = t;
if (Math.Abs(x) > Math.Abs(z))
{
matrixH[i + 1, n] = (-r - (w*t))/x;
}
else
{
matrixH[i + 1, n] = (-s - (y*t))/z;
}
}
// Overflow control
t = Math.Abs(matrixH[i, n]);
if ((eps*t)*t > 1)
{
for (var j = i; j <= n; j++)
{
matrixH[j, n] = matrixH[j, n]/t;
}
}
}
}
// Complex vector
}
else if (q < 0)
{
var l = n - 1;
// Last vector component imaginary so matrix is triangular
if (Math.Abs(matrixH[n, n - 1]) > Math.Abs(matrixH[n - 1, n]))
{
matrixH[n - 1, n - 1] = q/matrixH[n, n - 1];
matrixH[n - 1, n] = (-(matrixH[n, n] - p))/matrixH[n, n - 1];
}
else
{
var res = Cdiv(0.0, -matrixH[n - 1, n], matrixH[n - 1, n - 1] - p, q);
matrixH[n - 1, n - 1] = res.Real;
matrixH[n - 1, n] = res.Imaginary;
}
matrixH[n, n - 1] = 0.0;
matrixH[n, n] = 1.0;
for (var i = n - 2; i >= 0; i--)
{
double ra = 0.0;
double sa = 0.0;
for (var j = l; j <= n; j++)
{
ra = ra + (matrixH[i, j]*matrixH[j, n - 1]);
sa = sa + (matrixH[i, j]*matrixH[j, n]);
}
w = matrixH[i, i] - p;
if (e[i] < 0.0)
{
z = w;
r = ra;
s = sa;
}
else
{
l = i;
if (e[i] == 0.0)
{
var res = Cdiv(-ra, -sa, w, q);
matrixH[i, n - 1] = res.Real;
matrixH[i, n] = res.Imaginary;
}
else
{
// Solve complex equations
x = matrixH[i, i + 1];
y = matrixH[i + 1, i];
double vr = ((d[i] - p)*(d[i] - p)) + (e[i]*e[i]) - (q*q);
double vi = (d[i] - p)*2.0*q;
if ((vr == 0.0) && (vi == 0.0))
{
vr = eps*norm*(Math.Abs(w) + Math.Abs(q) + Math.Abs(x) + Math.Abs(y) + Math.Abs(z));
}
var res = Cdiv((x*r) - (z*ra) + (q*sa), (x*s) - (z*sa) - (q*ra), vr, vi);
matrixH[i, n - 1] = res.Real;
matrixH[i, n] = res.Imaginary;
if (Math.Abs(x) > (Math.Abs(z) + Math.Abs(q)))
{
matrixH[i + 1, n - 1] = (-ra - (w*matrixH[i, n - 1]) + (q*matrixH[i, n]))/x;
matrixH[i + 1, n] = (-sa - (w*matrixH[i, n]) - (q*matrixH[i, n - 1]))/x;
}
else
{
res = Cdiv(-r - (y*matrixH[i, n - 1]), -s - (y*matrixH[i, n]), z, q);
matrixH[i + 1, n - 1] = res.Real;
matrixH[i + 1, n] = res.Imaginary;
}
}
// Overflow control
t = Math.Max(Math.Abs(matrixH[i, n - 1]), Math.Abs(matrixH[i, n]));
if ((eps*t)*t > 1)
{
for (var j = i; j <= n; j++)
{
matrixH[j, n - 1] = matrixH[j, n - 1]/t;
matrixH[j, n] = matrixH[j, n]/t;
}
}
}
}
}
}
// Back transformation to get eigenvectors of original matrix
for (var j = order - 1; j >= 0; j--)
{
for (var i = 0; i < order; i++)
{
z = 0.0;
for (var k = 0; k <= j; k++)
{
z = z + (eigenVectors.At(i, k)*matrixH[k, j]);
}
eigenVectors.At(i, j, z);
}
}
}
///
/// Complex scalar division X/Y.
///
/// Real part of X
/// Imaginary part of X
/// Real part of Y
/// Imaginary part of Y
/// Division result as a number.
static Complex Cdiv(double xreal, double ximag, double yreal, double yimag)
{
if (Math.Abs(yimag) < Math.Abs(yreal))
{
return new Complex((xreal + (ximag*(yimag/yreal)))/(yreal + (yimag*(yimag/yreal))), (ximag - (xreal*(yimag/yreal)))/(yreal + (yimag*(yimag/yreal))));
}
return new Complex((ximag + (xreal*(yreal/yimag)))/(yimag + (yreal*(yreal/yimag))), (-xreal + (ximag*(yreal/yimag)))/(yimag + (yreal*(yreal/yimag))));
}
///
/// Solves a system of linear equations, AX = B, with A SVD factorized.
///
/// The right hand side , B.
/// The left hand side , X.
public override void Solve(Matrix input, Matrix result)
{
// The solution X should have the same number of columns as B
if (input.ColumnCount != result.ColumnCount)
{
throw new ArgumentException("Matrix column dimensions must agree.");
}
// The dimension compatibility conditions for X = A\B require the two matrices A and B to have the same number of rows
if (EigenValues.Count != input.RowCount)
{
throw new ArgumentException("Matrix row dimensions must agree.");
}
// The solution X row dimension is equal to the column dimension of A
if (EigenValues.Count != result.RowCount)
{
throw new ArgumentException("Matrix column dimensions must agree.");
}
if (IsSymmetric)
{
var order = EigenValues.Count;
var tmp = new double[order];
for (var k = 0; k < order; k++)
{
for (var j = 0; j < order; j++)
{
double value = 0;
if (j < order)
{
for (var i = 0; i < order; i++)
{
value += EigenVectors.At(i, j)*input.At(i, k);
}
value /= EigenValues[j].Real;
}
tmp[j] = value;
}
for (var j = 0; j < order; j++)
{
double value = 0;
for (var i = 0; i < order; i++)
{
value += EigenVectors.At(j, i)*tmp[i];
}
result.At(j, k, value);
}
}
}
else
{
throw new ArgumentException("Matrix must be symmetric.");
}
}
///
/// Solves a system of linear equations, Ax = b, with A EVD factorized.
///
/// The right hand side vector, b.
/// The left hand side , x.
public override void Solve(Vector input, Vector result)
{
// Ax=b where A is an m x m matrix
// Check that b is a column vector with m entries
if (EigenValues.Count != input.Count)
{
throw new ArgumentException("All vectors must have the same dimensionality.");
}
// Check that x is a column vector with n entries
if (EigenValues.Count != result.Count)
{
throw new ArgumentException("Matrix dimensions must agree.");
}
if (IsSymmetric)
{
// Symmetric case -> x = V * inv(λ) * VT * b;
var order = EigenValues.Count;
var tmp = new double[order];
double value;
for (var j = 0; j < order; j++)
{
value = 0;
if (j < order)
{
for (var i = 0; i < order; i++)
{
value += EigenVectors.At(i, j)*input[i];
}
value /= EigenValues[j].Real;
}
tmp[j] = value;
}
for (var j = 0; j < order; j++)
{
value = 0;
for (int i = 0; i < order; i++)
{
value += EigenVectors.At(j, i)*tmp[i];
}
result[j] = value;
}
}
else
{
throw new ArgumentException("Matrix must be symmetric.");
}
}
}
}