// // Math.NET Numerics, part of the Math.NET Project // http://numerics.mathdotnet.com // http://github.com/mathnet/mathnet-numerics // // Copyright (c) 2009-2013 Math.NET // // Permission is hereby granted, free of charge, to any person // obtaining a copy of this software and associated documentation // files (the "Software"), to deal in the Software without // restriction, including without limitation the rights to use, // copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the // Software is furnished to do so, subject to the following // conditions: // // The above copyright notice and this permission notice shall be // included in all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES // OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT // HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, // WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR // OTHER DEALINGS IN THE SOFTWARE. // using System; using System.Collections.Generic; using IStation.Numerics.LinearAlgebra; namespace IStation.Numerics.LinearRegression { public static class WeightedRegression { /// /// Weighted Linear Regression using normal equations. /// /// Predictor matrix X /// Response vector Y /// Weight matrix W, usually diagonal with an entry for each predictor (row). public static Vector Weighted(Matrix x, Vector y, Matrix w) where T : struct, IEquatable, IFormattable { return x.TransposeThisAndMultiply(w*x).Cholesky().Solve(x.TransposeThisAndMultiply(w*y)); } /// /// Weighted Linear Regression using normal equations. /// /// Predictor matrix X /// Response matrix Y /// Weight matrix W, usually diagonal with an entry for each predictor (row). public static Matrix Weighted(Matrix x, Matrix y, Matrix w) where T : struct, IEquatable, IFormattable { return x.TransposeThisAndMultiply(w*x).Cholesky().Solve(x.TransposeThisAndMultiply(w*y)); } /// /// Weighted Linear Regression using normal equations. /// /// Predictor matrix X /// Response vector Y /// Weight matrix W, usually diagonal with an entry for each predictor (row). /// True if an intercept should be added as first artificial predictor value. Default = false. public static T[] Weighted(T[][] x, T[] y, T[] w, bool intercept = false) where T : struct, IEquatable, IFormattable { var predictor = Matrix.Build.DenseOfRowArrays(x); if (intercept) { predictor = predictor.InsertColumn(0, Vector.Build.Dense(predictor.RowCount, Vector.One)); } var response = Vector.Build.Dense(y); var weights = Matrix.Build.Diagonal(w); return predictor.TransposeThisAndMultiply(weights*predictor).Cholesky().Solve(predictor.TransposeThisAndMultiply(weights*response)).ToArray(); } /// /// Weighted Linear Regression using normal equations. /// /// List of sample vectors (predictor) together with their response. /// List of weights, one for each sample. /// True if an intercept should be added as first artificial predictor value. Default = false. public static T[] Weighted(IEnumerable> samples, T[] weights, bool intercept = false) where T : struct, IEquatable, IFormattable { var xy = samples.UnpackSinglePass(); return Weighted(xy.Item1, xy.Item2, weights, intercept); } /// /// Locally-Weighted Linear Regression using normal equations. /// [Obsolete("Warning: This function is here to stay but its signature will likely change. Opting out from semantic versioning.")] public static Vector Local(Matrix x, Vector y, Vector t, double radius, Func kernel) where T : struct, IEquatable, IFormattable { // TODO: Weird kernel definition var w = Matrix.Build.Dense(x.RowCount, x.RowCount); for (int i = 0; i < x.RowCount; i++) { w.At(i, i, kernel(Distance.Euclidean(t, x.Row(i))/radius)); } return Weighted(x, y, w); } /// /// Locally-Weighted Linear Regression using normal equations. /// [Obsolete("Warning: This function is here to stay but its signature will likely change. Opting out from semantic versioning.")] public static Matrix Local(Matrix x, Matrix y, Vector t, double radius, Func kernel) where T : struct, IEquatable, IFormattable { // TODO: Weird kernel definition var w = Matrix.Build.Dense(x.RowCount, x.RowCount); for (int i = 0; i < x.RowCount; i++) { w.At(i, i, kernel(Distance.Euclidean(t, x.Row(i))/radius)); } return Weighted(x, y, w); } [Obsolete("Warning: This function is here to stay but will likely be refactored and/or moved to another place. Opting out from semantic versioning.")] public static double GaussianKernel(double normalizedDistance) { return Math.Exp(-0.5*normalizedDistance*normalizedDistance); } } }