using System;
using System.Collections.Generic;
using System.Linq;
using IStation.Numerics.LinearAlgebra;
namespace IStation.Numerics.Optimization.TrustRegion
{
public abstract class TrustRegionMinimizerBase : NonlinearMinimizerBase
{
///
/// The trust region subproblem.
///
public static ITrustRegionSubproblem Subproblem;
///
/// The stopping threshold for the trust region radius.
///
public static double RadiusTolerance { get; set; }
public TrustRegionMinimizerBase(ITrustRegionSubproblem subproblem,
double gradientTolerance = 1E-8, double stepTolerance = 1E-8, double functionTolerance = 1E-8, double radiusTolerance = 1E-8, int maximumIterations = -1)
: base(gradientTolerance, stepTolerance, functionTolerance, maximumIterations)
{
if (subproblem == null)
throw new ArgumentNullException("subproblem");
Subproblem = subproblem;
RadiusTolerance = radiusTolerance;
}
public NonlinearMinimizationResult FindMinimum(IObjectiveModel objective, Vector initialGuess,
Vector lowerBound = null, Vector upperBound = null, Vector scales = null, List isFixed = null)
{
return Minimum(Subproblem, objective, initialGuess, lowerBound, upperBound, scales, isFixed,
GradientTolerance, StepTolerance, FunctionTolerance, RadiusTolerance, MaximumIterations);
}
public NonlinearMinimizationResult FindMinimum(IObjectiveModel objective, double[] initialGuess,
double[] lowerBound = null, double[] upperBound = null, double[] scales = null, bool[] isFixed = null)
{
var lb = (lowerBound == null) ? null : CreateVector.Dense(lowerBound);
var ub = (upperBound == null) ? null : CreateVector.Dense(upperBound);
var sc = (scales == null) ? null : CreateVector.Dense(scales);
var fx = (isFixed == null) ? null : isFixed.ToList();
return Minimum(Subproblem, objective, CreateVector.DenseOfArray(initialGuess), lb, ub, sc, fx,
GradientTolerance, StepTolerance, FunctionTolerance, RadiusTolerance, MaximumIterations);
}
///
/// Non-linear least square fitting by the trust-region algorithm.
///
/// The objective model, including function, jacobian, observations, and parameter bounds.
/// The subproblem
/// The initial guess values.
/// The stopping threshold for L2 norm of the residuals.
/// The stopping threshold for infinity norm of the gradient vector.
/// The stopping threshold for L2 norm of the change of parameters.
/// The stopping threshold for trust region radius
/// The max iterations.
///
public static NonlinearMinimizationResult Minimum(ITrustRegionSubproblem subproblem, IObjectiveModel objective, Vector initialGuess,
Vector lowerBound = null, Vector upperBound = null, Vector scales = null, List isFixed = null,
double gradientTolerance = 1E-8, double stepTolerance = 1E-8, double functionTolerance = 1E-8, double radiusTolerance = 1E-18, int maximumIterations = -1)
{
// Non-linear least square fitting by the trust-region algorithm.
//
// For given datum pair (x, y), uncertainties σ (or weighting W = 1 / σ^2) and model function f = f(x; p),
// let's find the parameters of the model so that the sum of the quares of the deviations is minimized.
//
// F(p) = 1/2 * ∑{ Wi * (yi - f(xi; p))^2 }
// pbest = argmin F(p)
//
// Here, we will use the following terms:
// Weighting W is the diagonal matrix and can be decomposed as LL', so L = 1/σ
// Residuals, R = L(y - f(x; p))
// Residual sum of squares, RSS = ||R||^2 = R.DotProduct(R)
// Jacobian J = df(x; p)/dp
// Gradient g = -J'W(y − f(x; p)) = -J'LR
// Approximated Hessian H = J'WJ
//
// The trust region algorithm is summarized as follows:
// initially set trust-region radius, Δ
// repeat
// solve subproblem
// update Δ:
// let ρ = (RSS - RSSnew) / predRed
// if ρ > 0.75, Δ = 2Δ
// if ρ < 0.25, Δ = Δ/4
// if ρ > eta, P = P + ΔP
//
// References:
// [1]. Madsen, K., H. B. Nielsen, and O. Tingleff.
// "Methods for Non-Linear Least Squares Problems. Technical University of Denmark, 2004. Lecture notes." (2004).
// Available Online from: http://orbit.dtu.dk/files/2721358/imm3215.pdf
// [2]. Nocedal, Jorge, and Stephen J. Wright.
// Numerical optimization (2006): 101-134.
// [3]. SciPy
// Available Online from: https://github.com/scipy/scipy/blob/master/scipy/optimize/_trustregion.py
double maxDelta = 1000;
double eta = 0;
if (objective == null)
throw new ArgumentNullException("objective");
ValidateBounds(initialGuess, lowerBound, upperBound, scales);
objective.SetParameters(initialGuess, isFixed);
ExitCondition exitCondition = ExitCondition.None;
// First, calculate function values and setup variables
var P = ProjectToInternalParameters(initialGuess); // current internal parameters
var Pstep = Vector.Build.Dense(P.Count); // the change of parameters
var RSS = EvaluateFunction(objective, initialGuess); // Residual Sum of Squares
if (maximumIterations < 0)
{
maximumIterations = 200 * (initialGuess.Count + 1);
}
// if RSS == NaN, stop
if (double.IsNaN(RSS))
{
exitCondition = ExitCondition.InvalidValues;
return new NonlinearMinimizationResult(objective, -1, exitCondition);
}
// When only function evaluation is needed, set maximumIterations to zero,
if (maximumIterations == 0)
{
exitCondition = ExitCondition.ManuallyStopped;
}
// if ||R||^2 <= fTol, stop
if (RSS <= functionTolerance)
{
exitCondition = ExitCondition.Converged; // SmallRSS
}
// evaluate projected gradient and Hessian
var jac = EvaluateJacobian(objective, P);
var Gradient = jac.Item1; // objective.Gradient;
var Hessian = jac.Item2; // objective.Hessian;
// if ||g||_oo <= gtol, found and stop
if (Gradient.InfinityNorm() <= gradientTolerance)
{
exitCondition = ExitCondition.RelativeGradient; // SmallGradient
}
if (exitCondition != ExitCondition.None)
{
return new NonlinearMinimizationResult(objective, -1, exitCondition);
}
// initialize trust-region radius, Δ
double delta = Gradient.DotProduct(Gradient) / (Hessian * Gradient).DotProduct(Gradient);
delta = Math.Max(1.0, Math.Min(delta, maxDelta));
int iterations = 0;
bool hitBoundary = false;
while (iterations < maximumIterations && exitCondition == ExitCondition.None)
{
iterations++;
// solve the subproblem
subproblem.Solve(objective, delta);
Pstep = subproblem.Pstep;
hitBoundary = subproblem.HitBoundary;
// predicted reduction = L(0) - L(Δp) = -Δp'g - 1/2 * Δp'HΔp
var predictedReduction = -Gradient.DotProduct(Pstep) - 0.5 * Pstep.DotProduct(Hessian * Pstep);
if (Pstep.L2Norm() <= stepTolerance * (stepTolerance + P.L2Norm()))
{
exitCondition = ExitCondition.RelativePoints; // SmallRelativeParameters
break;
}
var Pnew = P + Pstep; // parameters to test
// evaluate function at Pnew
var RSSnew = EvaluateFunction(objective, Pnew);
// if RSS == NaN, stop
if (double.IsNaN(RSSnew))
{
exitCondition = ExitCondition.InvalidValues;
break;
}
// calculate the ratio of the actual to the predicted reduction.
double rho = (predictedReduction != 0)
? (RSS - RSSnew) / predictedReduction
: 0.0;
if (rho > 0.75 && hitBoundary)
{
delta = Math.Min(2.0 * delta, maxDelta);
}
else if (rho < 0.25)
{
delta = delta * 0.25;
if (delta <= radiusTolerance * (radiusTolerance + P.DotProduct(P)))
{
exitCondition = ExitCondition.LackOfProgress;
break;
}
}
if (rho > eta)
{
// accepted
Pnew.CopyTo(P);
RSS = RSSnew;
// evaluate projected gradient and Hessian
jac = EvaluateJacobian(objective, P);
Gradient = jac.Item1; // objective.Gradient;
Hessian = jac.Item2; // objective.Hessian;
// if ||g||_oo <= gtol, found and stop
if (Gradient.InfinityNorm() <= gradientTolerance)
{
exitCondition = ExitCondition.RelativeGradient;
}
// if ||R||^2 < fTol, found and stop
if (RSS <= functionTolerance)
{
exitCondition = ExitCondition.Converged; // SmallRSS
}
}
}
if (iterations >= maximumIterations)
{
exitCondition = ExitCondition.ExceedIterations;
}
return new NonlinearMinimizationResult(objective, iterations, exitCondition);
}
}
}