// // Math.NET Numerics, part of the Math.NET Project // http://numerics.mathdotnet.com // http://github.com/mathnet/mathnet-numerics // // Copyright (c) 2009-2010 Math.NET // // Permission is hereby granted, free of charge, to any person // obtaining a copy of this software and associated documentation // files (the "Software"), to deal in the Software without // restriction, including without limitation the rights to use, // copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the // Software is furnished to do so, subject to the following // conditions: // // The above copyright notice and this permission notice shall be // included in all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES // OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT // HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, // WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR // OTHER DEALINGS IN THE SOFTWARE. // using System; namespace IStation.Numerics.Statistics.Mcmc { /// /// Slice sampling produces samples from distribution P by uniformly sampling from under the pdf of P using /// a technique described in "Slice Sampling", R. Neal, 2003. All densities are required to be in log space. /// /// The slice sampler is a stateful sampler. It keeps track of where it currently is in the domain /// of the distribution P. /// public class UnivariateSliceSampler : McmcSampler { /// /// Evaluates the log density function of the target distribution. /// private readonly DensityLn _pdfLnP; /// /// The current location of the sampler. /// private double _current; /// /// The log density at the current location. /// private double _currentDensityLn; /// /// The number of burn iterations between two samples. /// private int _burnInterval; /// /// The scale of the slice sampler. /// private double _scale; /// /// Constructs a new Slice sampler using the default random /// number generator. The burn interval will be set to 0. /// /// The initial sample. /// The density of the distribution we want to sample from. /// The scale factor of the slice sampler. /// When the scale of the slice sampler is not positive. public UnivariateSliceSampler(double x0, DensityLn pdfLnP, double scale) : this(x0, pdfLnP, 0, scale) { } /// /// Constructs a new slice sampler using the default random number generator. It /// will set the number of burnInterval iterations and run a burnInterval phase. /// /// The initial sample. /// The density of the distribution we want to sample from. /// The number of iterations in between returning samples. /// The scale factor of the slice sampler. /// When the number of burnInterval iteration is negative. /// When the scale of the slice sampler is not positive. public UnivariateSliceSampler(double x0, DensityLn pdfLnP, int burnInterval, double scale) { _current = x0; _currentDensityLn = pdfLnP(x0); _pdfLnP = pdfLnP; Scale = scale; BurnInterval = burnInterval; Burn(BurnInterval); } /// /// Gets or sets the number of iterations in between returning samples. /// /// When burn interval is negative. public int BurnInterval { get => _burnInterval; set { if (value < 0) { throw new ArgumentException("Value must not be negative (zero is ok)."); } _burnInterval = value; } } /// /// Gets or sets the scale of the slice sampler. /// public double Scale { get => _scale; set { if (value <= 0.0) { throw new ArgumentException("Value must be positive (and not zero)."); } _scale = value; } } /// /// This method runs the sampler for a number of iterations without returning a sample /// private void Burn(int n) { for (int i = 0; i < n; i++) { // The logarithm of the slice height. double lu = Math.Log(RandomSource.NextDouble()) + _currentDensityLn; // Create a horizontal interval (x_l, x_r) enclosing x. double r = RandomSource.NextDouble(); double xL = _current - r * Scale; double xR = _current + (1.0 - r) * Scale; // Stepping out procedure. while (_pdfLnP(xL) > lu) { xL -= Scale; } while (_pdfLnP(xR) > lu) { xR += Scale; } // Shrinking: propose new x and shrink interval until good one found. while (true) { double xnew = RandomSource.NextDouble() * (xR - xL) + xL; _currentDensityLn = _pdfLnP(xnew); if (_currentDensityLn > lu) { _current = xnew; Accepts++; Samples++; break; } if (xnew > _current) { xR = xnew; } else { xL = xnew; } } } } /// /// Returns a sample from the distribution P. /// public override double Sample() { Burn(BurnInterval + 1); return _current; } } }