//
// Math.NET Numerics, part of the Math.NET Project
// http://numerics.mathdotnet.com
// http://github.com/mathnet/mathnet-numerics
//
// Copyright (c) 2009-2010 Math.NET
//
// Permission is hereby granted, free of charge, to any person
// obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without
// restriction, including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following
// conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
//
using System;
namespace IStation.Numerics.Statistics.Mcmc
{
///
/// Slice sampling produces samples from distribution P by uniformly sampling from under the pdf of P using
/// a technique described in "Slice Sampling", R. Neal, 2003. All densities are required to be in log space.
///
/// The slice sampler is a stateful sampler. It keeps track of where it currently is in the domain
/// of the distribution P.
///
public class UnivariateSliceSampler : McmcSampler
{
///
/// Evaluates the log density function of the target distribution.
///
private readonly DensityLn _pdfLnP;
///
/// The current location of the sampler.
///
private double _current;
///
/// The log density at the current location.
///
private double _currentDensityLn;
///
/// The number of burn iterations between two samples.
///
private int _burnInterval;
///
/// The scale of the slice sampler.
///
private double _scale;
///
/// Constructs a new Slice sampler using the default random
/// number generator. The burn interval will be set to 0.
///
/// The initial sample.
/// The density of the distribution we want to sample from.
/// The scale factor of the slice sampler.
/// When the scale of the slice sampler is not positive.
public UnivariateSliceSampler(double x0, DensityLn pdfLnP, double scale)
: this(x0, pdfLnP, 0, scale)
{
}
///
/// Constructs a new slice sampler using the default random number generator. It
/// will set the number of burnInterval iterations and run a burnInterval phase.
///
/// The initial sample.
/// The density of the distribution we want to sample from.
/// The number of iterations in between returning samples.
/// The scale factor of the slice sampler.
/// When the number of burnInterval iteration is negative.
/// When the scale of the slice sampler is not positive.
public UnivariateSliceSampler(double x0, DensityLn pdfLnP, int burnInterval, double scale)
{
_current = x0;
_currentDensityLn = pdfLnP(x0);
_pdfLnP = pdfLnP;
Scale = scale;
BurnInterval = burnInterval;
Burn(BurnInterval);
}
///
/// Gets or sets the number of iterations in between returning samples.
///
/// When burn interval is negative.
public int BurnInterval
{
get => _burnInterval;
set
{
if (value < 0)
{
throw new ArgumentException("Value must not be negative (zero is ok).");
}
_burnInterval = value;
}
}
///
/// Gets or sets the scale of the slice sampler.
///
public double Scale
{
get => _scale;
set
{
if (value <= 0.0)
{
throw new ArgumentException("Value must be positive (and not zero).");
}
_scale = value;
}
}
///
/// This method runs the sampler for a number of iterations without returning a sample
///
private void Burn(int n)
{
for (int i = 0; i < n; i++)
{
// The logarithm of the slice height.
double lu = Math.Log(RandomSource.NextDouble()) + _currentDensityLn;
// Create a horizontal interval (x_l, x_r) enclosing x.
double r = RandomSource.NextDouble();
double xL = _current - r * Scale;
double xR = _current + (1.0 - r) * Scale;
// Stepping out procedure.
while (_pdfLnP(xL) > lu) { xL -= Scale; }
while (_pdfLnP(xR) > lu) { xR += Scale; }
// Shrinking: propose new x and shrink interval until good one found.
while (true)
{
double xnew = RandomSource.NextDouble() * (xR - xL) + xL;
_currentDensityLn = _pdfLnP(xnew);
if (_currentDensityLn > lu)
{
_current = xnew;
Accepts++;
Samples++;
break;
}
if (xnew > _current)
{
xR = xnew;
}
else
{
xL = xnew;
}
}
}
}
///
/// Returns a sample from the distribution P.
///
public override double Sample()
{
Burn(BurnInterval + 1);
return _current;
}
}
}