//
// Math.NET Numerics, part of the Math.NET Project
// http://numerics.mathdotnet.com
// http://github.com/mathnet/mathnet-numerics
//
// Copyright (c) 2009-2015 Math.NET
//
// Permission is hereby granted, free of charge, to any person
// obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without
// restriction, including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following
// conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
//
using System;
namespace IStation.Numerics.Differentiation
{
///
/// Class for evaluating the Jacobian of a function using finite differences.
/// By default, a central 3-point method is used.
///
public class NumericalJacobian
{
///
/// Number of function evaluations.
///
public int FunctionEvaluations => _df.Evaluations;
private readonly NumericalDerivative _df;
///
/// Creates a numerical Jacobian object with a three point central difference method.
///
public NumericalJacobian() : this(3, 1) { }
///
/// Creates a numerical Jacobian with a specified differentiation scheme.
///
/// Number of points for Jacobian evaluation.
/// Center point for differentiation.
public NumericalJacobian(int points, int center)
{
_df = new NumericalDerivative(points, center);
}
///
/// Evaluates the Jacobian of scalar univariate function f at point x.
///
/// Scalar univariate function handle.
/// Point at which to evaluate Jacobian.
/// Jacobian vector.
public double[] Evaluate(Func f, double x)
{
return new[] { _df.EvaluateDerivative(f, x, 1) };
}
///
/// Evaluates the Jacobian of a multivariate function f at vector x.
///
///
/// This function assumes that the length of vector x consistent with the argument count of f.
///
/// Multivariate function handle.
/// Points at which to evaluate Jacobian.
/// Jacobian vector.
public double[] Evaluate(Func f, double[] x)
{
var jacobian = new double[x.Length];
for (var i = 0; i < jacobian.Length; i++)
jacobian[i] = _df.EvaluatePartialDerivative(f, x, i, 1);
return jacobian;
}
///
/// Evaluates the Jacobian of a multivariate function f at vector x given a current function value.
///
///
/// To minimize the number of function evaluations, a user can supply the current value of the function
/// to be used in computing the Jacobian. This value must correspond to the "center" location for the
/// finite differencing. If a scheme is used where the center value is not evaluated, this will provide no
/// added efficiency. This method also assumes that the length of vector x consistent with the argument count of f.
///
/// Multivariate function handle.
/// Points at which to evaluate Jacobian.
/// Current function value at finite difference center.
/// Jacobian vector.
public double[] Evaluate(Func f, double[] x, double currentValue)
{
var jacobian = new double[x.Length];
for (var i = 0; i < jacobian.Length; i++)
jacobian[i] = _df.EvaluatePartialDerivative(f, x, i, 1, currentValue);
return jacobian;
}
///
/// Evaluates the Jacobian of a multivariate function array f at vector x.
///
/// Multivariate function array handle.
/// Vector at which to evaluate Jacobian.
/// Jacobian matrix.
public double[,] Evaluate(Func[] f, double[] x)
{
var jacobian = new double[f.Length, x.Length];
for (int i = 0; i < f.Length; i++)
{
var gradient = Evaluate(f[i], x);
for (int j = 0; j < gradient.Length; j++)
jacobian[i, j] = gradient[j];
}
return jacobian;
}
///
/// Evaluates the Jacobian of a multivariate function array f at vector x given a vector of current function values.
///
///
/// To minimize the number of function evaluations, a user can supply a vector of current values of the functions
/// to be used in computing the Jacobian. These value must correspond to the "center" location for the
/// finite differencing. If a scheme is used where the center value is not evaluated, this will provide no
/// added efficiency. This method also assumes that the length of vector x consistent with the argument count of f.
///
/// Multivariate function array handle.
/// Vector at which to evaluate Jacobian.
/// Vector of current function values.
/// Jacobian matrix.
public double[,] Evaluate(Func[] f, double[] x, double[] currentValues)
{
var jacobian = new double[f.Length, x.Length];
for (int i = 0; i < f.Length; i++)
{
var gradient = Evaluate(f[i], x, currentValues[i]);
for (int j = 0; j < gradient.Length; j++)
jacobian[i, j] = gradient[j];
}
return jacobian;
}
///
/// Resets the function evaluation counter for the Jacobian.
///
public void ResetFunctionEvaluations()
{
_df.ResetEvaluations();
}
}
}