//
// Math.NET Numerics, part of the Math.NET Project
// http://numerics.mathdotnet.com
// http://github.com/mathnet/mathnet-numerics
//
// Copyright (c) 2009-2013 Math.NET
//
// Permission is hereby granted, free of charge, to any person
// obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without
// restriction, including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following
// conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
//
using System;
namespace IStation.Numerics.LinearAlgebra.Complex.Factorization
{
using Complex = System.Numerics.Complex;
///
/// Eigenvalues and eigenvectors of a complex matrix.
///
///
/// If A is Hermitian, then A = V*D*V' where the eigenvalue matrix D is
/// diagonal and the eigenvector matrix V is Hermitian.
/// I.e. A = V*D*V' and V*VH=I.
/// If A is not symmetric, then the eigenvalue matrix D is block diagonal
/// with the real eigenvalues in 1-by-1 blocks and any complex eigenvalues,
/// lambda + i*mu, in 2-by-2 blocks, [lambda, mu; -mu, lambda]. The
/// columns of V represent the eigenvectors in the sense that A*V = V*D,
/// i.e. A.Multiply(V) equals V.Multiply(D). The matrix V may be badly
/// conditioned, or even singular, so the validity of the equation
/// A = V*D*Inverse(V) depends upon V.Condition().
///
internal sealed class UserEvd : Evd
{
///
/// Initializes a new instance of the class. This object will compute the
/// the eigenvalue decomposition when the constructor is called and cache it's decomposition.
///
/// The matrix to factor.
/// If it is known whether the matrix is symmetric or not the routine can skip checking it itself.
/// If is null.
/// If EVD algorithm failed to converge with matrix .
public static UserEvd Create(Matrix matrix, Symmetricity symmetricity)
{
if (matrix.RowCount != matrix.ColumnCount)
{
throw new ArgumentException("Matrix must be square.");
}
var order = matrix.RowCount;
// Initialize matrices for eigenvalues and eigenvectors
var eigenVectors = DenseMatrix.CreateIdentity(order);
var blockDiagonal = Matrix.Build.SameAs(matrix, order, order);
var eigenValues = new DenseVector(order);
bool isSymmetric;
switch (symmetricity)
{
case Symmetricity.Hermitian:
isSymmetric = true;
break;
case Symmetricity.Asymmetric:
isSymmetric = false;
break;
default:
isSymmetric = matrix.IsHermitian();
break;
}
if (isSymmetric)
{
var matrixCopy = matrix.ToArray();
var tau = new Complex[order];
var d = new double[order];
var e = new double[order];
SymmetricTridiagonalize(matrixCopy, d, e, tau, order);
SymmetricDiagonalize(eigenVectors, d, e, order);
SymmetricUntridiagonalize(eigenVectors, matrixCopy, tau, order);
for (var i = 0; i < order; i++)
{
eigenValues[i] = new Complex(d[i], e[i]);
}
}
else
{
var matrixH = matrix.ToArray();
NonsymmetricReduceToHessenberg(eigenVectors, matrixH, order);
NonsymmetricReduceHessenberToRealSchur(eigenVectors, eigenValues, matrixH, order);
}
blockDiagonal.SetDiagonal(eigenValues);
return new UserEvd(eigenVectors, eigenValues, blockDiagonal, isSymmetric);
}
UserEvd(Matrix eigenVectors, Vector eigenValues, Matrix blockDiagonal, bool isSymmetric)
: base(eigenVectors, eigenValues, blockDiagonal, isSymmetric)
{
}
///
/// Reduces a complex Hermitian matrix to a real symmetric tridiagonal matrix using unitary similarity transformations.
///
/// Source matrix to reduce
/// Output: Arrays for internal storage of real parts of eigenvalues
/// Output: Arrays for internal storage of imaginary parts of eigenvalues
/// Output: Arrays that contains further information about the transformations.
/// Order of initial matrix
/// This is derived from the Algol procedures HTRIDI by
/// Smith, Boyle, Dongarra, Garbow, Ikebe, Klema, Moler, and Wilkinson, Handbook for
/// Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
/// Fortran subroutine in EISPACK.
static void SymmetricTridiagonalize(Complex[,] matrixA, double[] d, double[] e, Complex[] tau, int order)
{
double hh;
tau[order - 1] = Complex.One;
for (var i = 0; i < order; i++)
{
d[i] = matrixA[i, i].Real;
}
// Householder reduction to tridiagonal form.
for (var i = order - 1; i > 0; i--)
{
// Scale to avoid under/overflow.
var scale = 0.0;
var h = 0.0;
for (var k = 0; k < i; k++)
{
scale = scale + Math.Abs(matrixA[i, k].Real) + Math.Abs(matrixA[i, k].Imaginary);
}
if (scale == 0.0)
{
tau[i - 1] = Complex.One;
e[i] = 0.0;
}
else
{
for (var k = 0; k < i; k++)
{
matrixA[i, k] /= scale;
h += matrixA[i, k].MagnitudeSquared();
}
Complex g = Math.Sqrt(h);
e[i] = scale*g.Real;
Complex temp;
var f = matrixA[i, i - 1];
if (f.Magnitude != 0)
{
temp = -(matrixA[i, i - 1].Conjugate()*tau[i].Conjugate())/f.Magnitude;
h += f.Magnitude*g.Real;
g = 1.0 + (g/f.Magnitude);
matrixA[i, i - 1] *= g;
}
else
{
temp = -tau[i].Conjugate();
matrixA[i, i - 1] = g;
}
if ((f.Magnitude == 0) || (i != 1))
{
f = Complex.Zero;
for (var j = 0; j < i; j++)
{
var tmp = Complex.Zero;
// Form element of A*U.
for (var k = 0; k <= j; k++)
{
tmp += matrixA[j, k]*matrixA[i, k].Conjugate();
}
for (var k = j + 1; k <= i - 1; k++)
{
tmp += matrixA[k, j].Conjugate()*matrixA[i, k].Conjugate();
}
// Form element of P
tau[j] = tmp/h;
f += (tmp/h)*matrixA[i, j];
}
hh = f.Real/(h + h);
// Form the reduced A.
for (var j = 0; j < i; j++)
{
f = matrixA[i, j].Conjugate();
g = tau[j] - (hh*f);
tau[j] = g.Conjugate();
for (var k = 0; k <= j; k++)
{
matrixA[j, k] -= (f*tau[k]) + (g*matrixA[i, k]);
}
}
}
for (var k = 0; k < i; k++)
{
matrixA[i, k] *= scale;
}
tau[i - 1] = temp.Conjugate();
}
hh = d[i];
d[i] = matrixA[i, i].Real;
matrixA[i, i] = new Complex(hh, scale*Math.Sqrt(h));
}
hh = d[0];
d[0] = matrixA[0, 0].Real;
matrixA[0, 0] = hh;
e[0] = 0.0;
}
///
/// Symmetric tridiagonal QL algorithm.
///
/// The eigen vectors to work on.
/// Arrays for internal storage of real parts of eigenvalues
/// Arrays for internal storage of imaginary parts of eigenvalues
/// Order of initial matrix
/// This is derived from the Algol procedures tql2, by
/// Bowdler, Martin, Reinsch, and Wilkinson, Handbook for
/// Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
/// Fortran subroutine in EISPACK.
///
static void SymmetricDiagonalize(Matrix eigenVectors, double[] d, double[] e, int order)
{
const int maxiter = 1000;
for (var i = 1; i < order; i++)
{
e[i - 1] = e[i];
}
e[order - 1] = 0.0;
var f = 0.0;
var tst1 = 0.0;
var eps = Precision.DoublePrecision;
for (var l = 0; l < order; l++)
{
// Find small subdiagonal element
tst1 = Math.Max(tst1, Math.Abs(d[l]) + Math.Abs(e[l]));
var m = l;
while (m < order)
{
if (Math.Abs(e[m]) <= eps*tst1)
{
break;
}
m++;
}
// If m == l, d[l] is an eigenvalue,
// otherwise, iterate.
if (m > l)
{
var iter = 0;
do
{
iter = iter + 1; // (Could check iteration count here.)
// Compute implicit shift
var g = d[l];
var p = (d[l + 1] - g)/(2.0*e[l]);
var r = SpecialFunctions.Hypotenuse(p, 1.0);
if (p < 0)
{
r = -r;
}
d[l] = e[l]/(p + r);
d[l + 1] = e[l]*(p + r);
var dl1 = d[l + 1];
var h = g - d[l];
for (var i = l + 2; i < order; i++)
{
d[i] -= h;
}
f = f + h;
// Implicit QL transformation.
p = d[m];
var c = 1.0;
var c2 = c;
var c3 = c;
var el1 = e[l + 1];
var s = 0.0;
var s2 = 0.0;
for (var i = m - 1; i >= l; i--)
{
c3 = c2;
c2 = c;
s2 = s;
g = c*e[i];
h = c*p;
r = SpecialFunctions.Hypotenuse(p, e[i]);
e[i + 1] = s*r;
s = e[i]/r;
c = p/r;
p = (c*d[i]) - (s*g);
d[i + 1] = h + (s*((c*g) + (s*d[i])));
// Accumulate transformation.
for (var k = 0; k < order; k++)
{
h = eigenVectors.At(k, i + 1).Real;
eigenVectors.At(k, i + 1, (s*eigenVectors.At(k, i).Real) + (c*h));
eigenVectors.At(k, i, (c*eigenVectors.At(k, i).Real) - (s*h));
}
}
p = (-s)*s2*c3*el1*e[l]/dl1;
e[l] = s*p;
d[l] = c*p;
// Check for convergence. If too many iterations have been performed,
// throw exception that Convergence Failed
if (iter >= maxiter)
{
throw new NonConvergenceException();
}
} while (Math.Abs(e[l]) > eps*tst1);
}
d[l] = d[l] + f;
e[l] = 0.0;
}
// Sort eigenvalues and corresponding vectors.
for (var i = 0; i < order - 1; i++)
{
var k = i;
var p = d[i];
for (var j = i + 1; j < order; j++)
{
if (d[j] < p)
{
k = j;
p = d[j];
}
}
if (k != i)
{
d[k] = d[i];
d[i] = p;
for (var j = 0; j < order; j++)
{
p = eigenVectors.At(j, i).Real;
eigenVectors.At(j, i, eigenVectors.At(j, k));
eigenVectors.At(j, k, p);
}
}
}
}
///
/// Determines eigenvectors by undoing the symmetric tridiagonalize transformation
///
/// The eigen vectors to work on.
/// Previously tridiagonalized matrix by .
/// Contains further information about the transformations
/// Input matrix order
/// This is derived from the Algol procedures HTRIBK, by
/// by Smith, Boyle, Dongarra, Garbow, Ikebe, Klema, Moler, and Wilkinson, Handbook for
/// Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
/// Fortran subroutine in EISPACK.
static void SymmetricUntridiagonalize(Matrix eigenVectors, Complex[,] matrixA, Complex[] tau, int order)
{
for (var i = 0; i < order; i++)
{
for (var j = 0; j < order; j++)
{
eigenVectors.At(i, j, eigenVectors.At(i, j).Real*tau[i].Conjugate());
}
}
// Recover and apply the Householder matrices.
for (var i = 1; i < order; i++)
{
var h = matrixA[i, i].Imaginary;
if (h != 0)
{
for (var j = 0; j < order; j++)
{
var s = Complex.Zero;
for (var k = 0; k < i; k++)
{
s += eigenVectors.At(k, j)*matrixA[i, k];
}
s = (s/h)/h;
for (var k = 0; k < i; k++)
{
eigenVectors.At(k, j, eigenVectors.At(k, j) - s*matrixA[i, k].Conjugate());
}
}
}
}
}
///
/// Nonsymmetric reduction to Hessenberg form.
///
/// The eigen vectors to work on.
/// Array for internal storage of nonsymmetric Hessenberg form.
/// Order of initial matrix
/// This is derived from the Algol procedures orthes and ortran,
/// by Martin and Wilkinson, Handbook for Auto. Comp.,
/// Vol.ii-Linear Algebra, and the corresponding
/// Fortran subroutines in EISPACK.
static void NonsymmetricReduceToHessenberg(Matrix eigenVectors, Complex[,] matrixH, int order)
{
var ort = new Complex[order];
for (var m = 1; m < order - 1; m++)
{
// Scale column.
var scale = 0.0;
for (var i = m; i < order; i++)
{
scale += Math.Abs(matrixH[i, m - 1].Real) + Math.Abs(matrixH[i, m - 1].Imaginary);
}
if (scale != 0.0)
{
// Compute Householder transformation.
var h = 0.0;
for (var i = order - 1; i >= m; i--)
{
ort[i] = matrixH[i, m - 1]/scale;
h += ort[i].MagnitudeSquared();
}
var g = Math.Sqrt(h);
if (ort[m].Magnitude != 0)
{
h = h + (ort[m].Magnitude*g);
g /= ort[m].Magnitude;
ort[m] = (1.0 + g)*ort[m];
}
else
{
ort[m] = g;
matrixH[m, m - 1] = scale;
}
// Apply Householder similarity transformation
// H = (I-u*u'/h)*H*(I-u*u')/h)
for (var j = m; j < order; j++)
{
var f = Complex.Zero;
for (var i = order - 1; i >= m; i--)
{
f += ort[i].Conjugate()*matrixH[i, j];
}
f = f/h;
for (var i = m; i < order; i++)
{
matrixH[i, j] -= f*ort[i];
}
}
for (var i = 0; i < order; i++)
{
var f = Complex.Zero;
for (var j = order - 1; j >= m; j--)
{
f += ort[j]*matrixH[i, j];
}
f = f/h;
for (var j = m; j < order; j++)
{
matrixH[i, j] -= f*ort[j].Conjugate();
}
}
ort[m] = scale*ort[m];
matrixH[m, m - 1] *= -g;
}
}
// Accumulate transformations (Algol's ortran).
for (var i = 0; i < order; i++)
{
for (var j = 0; j < order; j++)
{
eigenVectors.At(i, j, i == j ? Complex.One : Complex.Zero);
}
}
for (var m = order - 2; m >= 1; m--)
{
if (matrixH[m, m - 1] != Complex.Zero && ort[m] != Complex.Zero)
{
var norm = (matrixH[m, m - 1].Real*ort[m].Real) + (matrixH[m, m - 1].Imaginary*ort[m].Imaginary);
for (var i = m + 1; i < order; i++)
{
ort[i] = matrixH[i, m - 1];
}
for (var j = m; j < order; j++)
{
var g = Complex.Zero;
for (var i = m; i < order; i++)
{
g += ort[i].Conjugate()*eigenVectors.At(i, j);
}
// Double division avoids possible underflow
g /= norm;
for (var i = m; i < order; i++)
{
eigenVectors.At(i, j, eigenVectors.At(i, j) + g*ort[i]);
}
}
}
}
// Create real subdiagonal elements.
for (var i = 1; i < order; i++)
{
if (matrixH[i, i - 1].Imaginary != 0.0)
{
var y = matrixH[i, i - 1]/matrixH[i, i - 1].Magnitude;
matrixH[i, i - 1] = matrixH[i, i - 1].Magnitude;
for (var j = i; j < order; j++)
{
matrixH[i, j] *= y.Conjugate();
}
for (var j = 0; j <= Math.Min(i + 1, order - 1); j++)
{
matrixH[j, i] *= y;
}
for (var j = 0; j < order; j++)
{
eigenVectors.At(j, i, eigenVectors.At(j, i)*y);
}
}
}
}
///
/// Nonsymmetric reduction from Hessenberg to real Schur form.
///
/// The eigen vectors to work on.
/// The eigen values to work on.
/// Array for internal storage of nonsymmetric Hessenberg form.
/// Order of initial matrix
/// This is derived from the Algol procedure hqr2,
/// by Martin and Wilkinson, Handbook for Auto. Comp.,
/// Vol.ii-Linear Algebra, and the corresponding
/// Fortran subroutine in EISPACK.
static void NonsymmetricReduceHessenberToRealSchur(Matrix eigenVectors, Vector eigenValues, Complex[,] matrixH, int order)
{
// Initialize
var n = order - 1;
var eps = Precision.DoublePrecision;
double norm;
Complex x, y, z, exshift = Complex.Zero;
// Outer loop over eigenvalue index
var iter = 0;
while (n >= 0)
{
// Look for single small sub-diagonal element
var l = n;
while (l > 0)
{
var tst1 = Math.Abs(matrixH[l - 1, l - 1].Real) + Math.Abs(matrixH[l - 1, l - 1].Imaginary) + Math.Abs(matrixH[l, l].Real) + Math.Abs(matrixH[l, l].Imaginary);
if (Math.Abs(matrixH[l, l - 1].Real) < eps*tst1)
{
break;
}
l--;
}
// Check for convergence
// One root found
if (l == n)
{
matrixH[n, n] += exshift;
eigenValues[n] = matrixH[n, n];
n--;
iter = 0;
}
else
{
// Form shift
Complex s;
if (iter != 10 && iter != 20)
{
s = matrixH[n, n];
x = matrixH[n - 1, n]*matrixH[n, n - 1].Real;
if (x.Real != 0.0 || x.Imaginary != 0.0)
{
y = (matrixH[n - 1, n - 1] - s)/2.0;
z = ((y*y) + x).SquareRoot();
if ((y.Real*z.Real) + (y.Imaginary*z.Imaginary) < 0.0)
{
z *= -1.0;
}
x /= y + z;
s = s - x;
}
}
else
{
// Form exceptional shift
s = Math.Abs(matrixH[n, n - 1].Real) + Math.Abs(matrixH[n - 1, n - 2].Real);
}
for (var i = 0; i <= n; i++)
{
matrixH[i, i] -= s;
}
exshift += s;
iter++;
// Reduce to triangle (rows)
for (var i = l + 1; i <= n; i++)
{
s = matrixH[i, i - 1].Real;
norm = SpecialFunctions.Hypotenuse(matrixH[i - 1, i - 1].Magnitude, s.Real);
x = matrixH[i - 1, i - 1]/norm;
eigenValues[i - 1] = x;
matrixH[i - 1, i - 1] = norm;
matrixH[i, i - 1] = new Complex(0.0, s.Real/norm);
for (var j = i; j < order; j++)
{
y = matrixH[i - 1, j];
z = matrixH[i, j];
matrixH[i - 1, j] = (x.Conjugate()*y) + (matrixH[i, i - 1].Imaginary*z);
matrixH[i, j] = (x*z) - (matrixH[i, i - 1].Imaginary*y);
}
}
s = matrixH[n, n];
if (s.Imaginary != 0.0)
{
s /= matrixH[n, n].Magnitude;
matrixH[n, n] = matrixH[n, n].Magnitude;
for (var j = n + 1; j < order; j++)
{
matrixH[n, j] *= s.Conjugate();
}
}
// Inverse operation (columns).
for (var j = l + 1; j <= n; j++)
{
x = eigenValues[j - 1];
for (var i = 0; i <= j; i++)
{
z = matrixH[i, j];
if (i != j)
{
y = matrixH[i, j - 1];
matrixH[i, j - 1] = (x*y) + (matrixH[j, j - 1].Imaginary*z);
}
else
{
y = matrixH[i, j - 1].Real;
matrixH[i, j - 1] = new Complex((x.Real*y.Real) - (x.Imaginary*y.Imaginary) + (matrixH[j, j - 1].Imaginary*z.Real), matrixH[i, j - 1].Imaginary);
}
matrixH[i, j] = (x.Conjugate()*z) - (matrixH[j, j - 1].Imaginary*y);
}
for (var i = 0; i < order; i++)
{
y = eigenVectors.At(i, j - 1);
z = eigenVectors.At(i, j);
eigenVectors.At(i, j - 1, (x*y) + (matrixH[j, j - 1].Imaginary*z));
eigenVectors.At(i, j, (x.Conjugate()*z) - (matrixH[j, j - 1].Imaginary*y));
}
}
if (s.Imaginary != 0.0)
{
for (var i = 0; i <= n; i++)
{
matrixH[i, n] *= s;
}
for (var i = 0; i < order; i++)
{
eigenVectors.At(i, n, eigenVectors.At(i, n)*s);
}
}
}
}
// All roots found.
// Backsubstitute to find vectors of upper triangular form
norm = 0.0;
for (var i = 0; i < order; i++)
{
for (var j = i; j < order; j++)
{
norm = Math.Max(norm, Math.Abs(matrixH[i, j].Real) + Math.Abs(matrixH[i, j].Imaginary));
}
}
if (order == 1)
{
return;
}
if (norm == 0.0)
{
return;
}
for (n = order - 1; n > 0; n--)
{
x = eigenValues[n];
matrixH[n, n] = 1.0;
for (var i = n - 1; i >= 0; i--)
{
z = 0.0;
for (var j = i + 1; j <= n; j++)
{
z += matrixH[i, j]*matrixH[j, n];
}
y = x - eigenValues[i];
if (y.Real == 0.0 && y.Imaginary == 0.0)
{
y = eps*norm;
}
matrixH[i, n] = z/y;
// Overflow control
var tr = Math.Abs(matrixH[i, n].Real) + Math.Abs(matrixH[i, n].Imaginary);
if ((eps*tr)*tr > 1)
{
for (var j = i; j <= n; j++)
{
matrixH[j, n] = matrixH[j, n]/tr;
}
}
}
}
// Back transformation to get eigenvectors of original matrix
for (var j = order - 1; j > 0; j--)
{
for (var i = 0; i < order; i++)
{
z = Complex.Zero;
for (var k = 0; k <= j; k++)
{
z += eigenVectors.At(i, k)*matrixH[k, j];
}
eigenVectors.At(i, j, z);
}
}
}
///
/// Solves a system of linear equations, AX = B, with A SVD factorized.
///
/// The right hand side , B.
/// The left hand side , X.
public override void Solve(Matrix input, Matrix result)
{
// The solution X should have the same number of columns as B
if (input.ColumnCount != result.ColumnCount)
{
throw new ArgumentException("Matrix column dimensions must agree.");
}
// The dimension compatibility conditions for X = A\B require the two matrices A and B to have the same number of rows
if (EigenValues.Count != input.RowCount)
{
throw new ArgumentException("Matrix row dimensions must agree.");
}
// The solution X row dimension is equal to the column dimension of A
if (EigenValues.Count != result.RowCount)
{
throw new ArgumentException("Matrix column dimensions must agree.");
}
if (IsSymmetric)
{
var order = EigenValues.Count;
var tmp = new Complex[order];
for (var k = 0; k < order; k++)
{
for (var j = 0; j < order; j++)
{
Complex value = 0.0;
if (j < order)
{
for (var i = 0; i < order; i++)
{
value += EigenVectors.At(i, j).Conjugate()*input.At(i, k);
}
value /= EigenValues[j].Real;
}
tmp[j] = value;
}
for (var j = 0; j < order; j++)
{
Complex value = 0.0;
for (var i = 0; i < order; i++)
{
value += EigenVectors.At(j, i)*tmp[i];
}
result.At(j, k, value);
}
}
}
else
{
throw new ArgumentException("Matrix must be symmetric.");
}
}
///
/// Solves a system of linear equations, Ax = b, with A EVD factorized.
///
/// The right hand side vector, b.
/// The left hand side , x.
public override void Solve(Vector input, Vector result)
{
// Ax=b where A is an m x m matrix
// Check that b is a column vector with m entries
if (EigenValues.Count != input.Count)
{
throw new ArgumentException("All vectors must have the same dimensionality.");
}
// Check that x is a column vector with n entries
if (EigenValues.Count != result.Count)
{
throw Matrix.DimensionsDontMatch(EigenValues, result);
}
if (IsSymmetric)
{
// Symmetric case -> x = V * inv(λ) * VH * b;
var order = EigenValues.Count;
var tmp = new Complex[order];
Complex value;
for (var j = 0; j < order; j++)
{
value = 0;
if (j < order)
{
for (var i = 0; i < order; i++)
{
value += EigenVectors.At(i, j).Conjugate()*input[i];
}
value /= EigenValues[j].Real;
}
tmp[j] = value;
}
for (var j = 0; j < order; j++)
{
value = 0;
for (int i = 0; i < order; i++)
{
value += EigenVectors.At(j, i)*tmp[i];
}
result[j] = value;
}
}
else
{
throw new ArgumentException("Matrix must be symmetric.");
}
}
}
}