//
// Math.NET Numerics, part of the Math.NET Project
// http://numerics.mathdotnet.com
// http://github.com/mathnet/mathnet-numerics
//
// Copyright (c) 2009-2013 Math.NET
//
// Permission is hereby granted, free of charge, to any person
// obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without
// restriction, including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following
// conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
//
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Linq;
using IStation.Numerics.Distributions;
using IStation.Numerics.LinearAlgebra.Double.Factorization;
using IStation.Numerics.LinearAlgebra.Factorization;
using IStation.Numerics.LinearAlgebra.Storage;
using IStation.Numerics.Providers.LinearAlgebra;
using IStation.Numerics.Threading;
namespace IStation.Numerics.LinearAlgebra.Double
{
///
/// A Matrix class with dense storage. The underlying storage is a one dimensional array in column-major order (column by column).
///
[Serializable]
[DebuggerDisplay("DenseMatrix {RowCount}x{ColumnCount}-Double")]
public class DenseMatrix : Matrix
{
///
/// Number of rows.
///
/// Using this instead of the RowCount property to speed up calculating
/// a matrix index in the data array.
readonly int _rowCount;
///
/// Number of columns.
///
/// Using this instead of the ColumnCount property to speed up calculating
/// a matrix index in the data array.
readonly int _columnCount;
///
/// Gets the matrix's data.
///
/// The matrix's data.
readonly double[] _values;
///
/// Create a new dense matrix straight from an initialized matrix storage instance.
/// The storage is used directly without copying.
/// Intended for advanced scenarios where you're working directly with
/// storage for performance or interop reasons.
///
public DenseMatrix(DenseColumnMajorMatrixStorage storage)
: base(storage)
{
_rowCount = storage.RowCount;
_columnCount = storage.ColumnCount;
_values = storage.Data;
}
///
/// Create a new square dense matrix with the given number of rows and columns.
/// All cells of the matrix will be initialized to zero.
///
/// If the order is less than one.
public DenseMatrix(int order)
: this(new DenseColumnMajorMatrixStorage(order, order))
{
}
///
/// Create a new dense matrix with the given number of rows and columns.
/// All cells of the matrix will be initialized to zero.
///
/// If the row or column count is less than one.
public DenseMatrix(int rows, int columns)
: this(new DenseColumnMajorMatrixStorage(rows, columns))
{
}
///
/// Create a new dense matrix with the given number of rows and columns directly binding to a raw array.
/// The array is assumed to be in column-major order (column by column) and is used directly without copying.
/// Very efficient, but changes to the array and the matrix will affect each other.
///
///
public DenseMatrix(int rows, int columns, double[] storage)
: this(new DenseColumnMajorMatrixStorage(rows, columns, storage))
{
}
///
/// Create a new dense matrix as a copy of the given other matrix.
/// This new matrix will be independent from the other matrix.
/// A new memory block will be allocated for storing the matrix.
///
public static DenseMatrix OfMatrix(Matrix matrix)
{
return new DenseMatrix(DenseColumnMajorMatrixStorage.OfMatrix(matrix.Storage));
}
///
/// Create a new dense matrix as a copy of the given two-dimensional array.
/// This new matrix will be independent from the provided array.
/// A new memory block will be allocated for storing the matrix.
///
public static DenseMatrix OfArray(double[,] array)
{
return new DenseMatrix(DenseColumnMajorMatrixStorage.OfArray(array));
}
///
/// Create a new dense matrix as a copy of the given indexed enumerable.
/// Keys must be provided at most once, zero is assumed if a key is omitted.
/// This new matrix will be independent from the enumerable.
/// A new memory block will be allocated for storing the matrix.
///
public static DenseMatrix OfIndexed(int rows, int columns, IEnumerable> enumerable)
{
return new DenseMatrix(DenseColumnMajorMatrixStorage.OfIndexedEnumerable(rows, columns, enumerable));
}
///
/// Create a new dense matrix as a copy of the given enumerable.
/// The enumerable is assumed to be in column-major order (column by column).
/// This new matrix will be independent from the enumerable.
/// A new memory block will be allocated for storing the matrix.
///
public static DenseMatrix OfColumnMajor(int rows, int columns, IEnumerable columnMajor)
{
return new DenseMatrix(DenseColumnMajorMatrixStorage.OfColumnMajorEnumerable(rows, columns, columnMajor));
}
///
/// Create a new dense matrix as a copy of the given enumerable of enumerable columns.
/// Each enumerable in the master enumerable specifies a column.
/// This new matrix will be independent from the enumerables.
/// A new memory block will be allocated for storing the matrix.
///
public static DenseMatrix OfColumns(IEnumerable> data)
{
return OfColumnArrays(data.Select(v => v.ToArray()).ToArray());
}
///
/// Create a new dense matrix as a copy of the given enumerable of enumerable columns.
/// Each enumerable in the master enumerable specifies a column.
/// This new matrix will be independent from the enumerables.
/// A new memory block will be allocated for storing the matrix.
///
public static DenseMatrix OfColumns(int rows, int columns, IEnumerable> data)
{
return new DenseMatrix(DenseColumnMajorMatrixStorage.OfColumnEnumerables(rows, columns, data));
}
///
/// Create a new dense matrix as a copy of the given column arrays.
/// This new matrix will be independent from the arrays.
/// A new memory block will be allocated for storing the matrix.
///
public static DenseMatrix OfColumnArrays(params double[][] columns)
{
return new DenseMatrix(DenseColumnMajorMatrixStorage.OfColumnArrays(columns));
}
///
/// Create a new dense matrix as a copy of the given column arrays.
/// This new matrix will be independent from the arrays.
/// A new memory block will be allocated for storing the matrix.
///
public static DenseMatrix OfColumnArrays(IEnumerable columns)
{
return new DenseMatrix(DenseColumnMajorMatrixStorage.OfColumnArrays((columns as double[][]) ?? columns.ToArray()));
}
///
/// Create a new dense matrix as a copy of the given column vectors.
/// This new matrix will be independent from the vectors.
/// A new memory block will be allocated for storing the matrix.
///
public static DenseMatrix OfColumnVectors(params Vector[] columns)
{
var storage = new VectorStorage[columns.Length];
for (int i = 0; i < columns.Length; i++)
{
storage[i] = columns[i].Storage;
}
return new DenseMatrix(DenseColumnMajorMatrixStorage.OfColumnVectors(storage));
}
///
/// Create a new dense matrix as a copy of the given column vectors.
/// This new matrix will be independent from the vectors.
/// A new memory block will be allocated for storing the matrix.
///
public static DenseMatrix OfColumnVectors(IEnumerable> columns)
{
return new DenseMatrix(DenseColumnMajorMatrixStorage.OfColumnVectors(columns.Select(c => c.Storage).ToArray()));
}
///
/// Create a new dense matrix as a copy of the given enumerable of enumerable rows.
/// Each enumerable in the master enumerable specifies a row.
/// This new matrix will be independent from the enumerables.
/// A new memory block will be allocated for storing the matrix.
///
public static DenseMatrix OfRows(IEnumerable> data)
{
return OfRowArrays(data.Select(v => v.ToArray()).ToArray());
}
///
/// Create a new dense matrix as a copy of the given enumerable of enumerable rows.
/// Each enumerable in the master enumerable specifies a row.
/// This new matrix will be independent from the enumerables.
/// A new memory block will be allocated for storing the matrix.
///
public static DenseMatrix OfRows(int rows, int columns, IEnumerable> data)
{
return new DenseMatrix(DenseColumnMajorMatrixStorage.OfRowEnumerables(rows, columns, data));
}
///
/// Create a new dense matrix as a copy of the given row arrays.
/// This new matrix will be independent from the arrays.
/// A new memory block will be allocated for storing the matrix.
///
public static DenseMatrix OfRowArrays(params double[][] rows)
{
return new DenseMatrix(DenseColumnMajorMatrixStorage.OfRowArrays(rows));
}
///
/// Create a new dense matrix as a copy of the given row arrays.
/// This new matrix will be independent from the arrays.
/// A new memory block will be allocated for storing the matrix.
///
public static DenseMatrix OfRowArrays(IEnumerable rows)
{
return new DenseMatrix(DenseColumnMajorMatrixStorage.OfRowArrays((rows as double[][]) ?? rows.ToArray()));
}
///
/// Create a new dense matrix as a copy of the given row vectors.
/// This new matrix will be independent from the vectors.
/// A new memory block will be allocated for storing the matrix.
///
public static DenseMatrix OfRowVectors(params Vector[] rows)
{
var storage = new VectorStorage[rows.Length];
for (int i = 0; i < rows.Length; i++)
{
storage[i] = rows[i].Storage;
}
return new DenseMatrix(DenseColumnMajorMatrixStorage.OfRowVectors(storage));
}
///
/// Create a new dense matrix as a copy of the given row vectors.
/// This new matrix will be independent from the vectors.
/// A new memory block will be allocated for storing the matrix.
///
public static DenseMatrix OfRowVectors(IEnumerable> rows)
{
return new DenseMatrix(DenseColumnMajorMatrixStorage.OfRowVectors(rows.Select(r => r.Storage).ToArray()));
}
///
/// Create a new dense matrix with the diagonal as a copy of the given vector.
/// This new matrix will be independent from the vector.
/// A new memory block will be allocated for storing the matrix.
///
public static DenseMatrix OfDiagonalVector(Vector diagonal)
{
var m = new DenseMatrix(diagonal.Count, diagonal.Count);
m.SetDiagonal(diagonal);
return m;
}
///
/// Create a new dense matrix with the diagonal as a copy of the given vector.
/// This new matrix will be independent from the vector.
/// A new memory block will be allocated for storing the matrix.
///
public static DenseMatrix OfDiagonalVector(int rows, int columns, Vector diagonal)
{
var m = new DenseMatrix(rows, columns);
m.SetDiagonal(diagonal);
return m;
}
///
/// Create a new dense matrix with the diagonal as a copy of the given array.
/// This new matrix will be independent from the array.
/// A new memory block will be allocated for storing the matrix.
///
public static DenseMatrix OfDiagonalArray(double[] diagonal)
{
var m = new DenseMatrix(diagonal.Length, diagonal.Length);
m.SetDiagonal(diagonal);
return m;
}
///
/// Create a new dense matrix with the diagonal as a copy of the given array.
/// This new matrix will be independent from the array.
/// A new memory block will be allocated for storing the matrix.
///
public static DenseMatrix OfDiagonalArray(int rows, int columns, double[] diagonal)
{
var m = new DenseMatrix(rows, columns);
m.SetDiagonal(diagonal);
return m;
}
///
/// Create a new dense matrix and initialize each value to the same provided value.
///
public static DenseMatrix Create(int rows, int columns, double value)
{
if (value == 0d) return new DenseMatrix(rows, columns);
return new DenseMatrix(DenseColumnMajorMatrixStorage.OfValue(rows, columns, value));
}
///
/// Create a new dense matrix and initialize each value using the provided init function.
///
public static DenseMatrix Create(int rows, int columns, Func init)
{
return new DenseMatrix(DenseColumnMajorMatrixStorage.OfInit(rows, columns, init));
}
///
/// Create a new diagonal dense matrix and initialize each diagonal value to the same provided value.
///
public static DenseMatrix CreateDiagonal(int rows, int columns, double value)
{
if (value == 0d) return new DenseMatrix(rows, columns);
return new DenseMatrix(DenseColumnMajorMatrixStorage.OfDiagonalInit(rows, columns, i => value));
}
///
/// Create a new diagonal dense matrix and initialize each diagonal value using the provided init function.
///
public static DenseMatrix CreateDiagonal(int rows, int columns, Func init)
{
return new DenseMatrix(DenseColumnMajorMatrixStorage.OfDiagonalInit(rows, columns, init));
}
///
/// Create a new square sparse identity matrix where each diagonal value is set to One.
///
public static DenseMatrix CreateIdentity(int order)
{
return new DenseMatrix(DenseColumnMajorMatrixStorage.OfDiagonalInit(order, order, i => One));
}
///
/// Create a new dense matrix with values sampled from the provided random distribution.
///
public static DenseMatrix CreateRandom(int rows, int columns, IContinuousDistribution distribution)
{
return new DenseMatrix(new DenseColumnMajorMatrixStorage(rows, columns, Generate.Random(rows*columns, distribution)));
}
///
/// Gets the matrix's data.
///
/// The matrix's data.
public double[] Values => _values;
/// Calculates the induced L1 norm of this matrix.
/// The maximum absolute column sum of the matrix.
public override double L1Norm()
{
return LinearAlgebraControl.Provider.MatrixNorm(Norm.OneNorm, _rowCount, _columnCount, _values);
}
/// Calculates the induced infinity norm of this matrix.
/// The maximum absolute row sum of the matrix.
public override double InfinityNorm()
{
return LinearAlgebraControl.Provider.MatrixNorm(Norm.InfinityNorm, _rowCount, _columnCount, _values);
}
/// Calculates the entry-wise Frobenius norm of this matrix.
/// The square root of the sum of the squared values.
public override double FrobeniusNorm()
{
return LinearAlgebraControl.Provider.MatrixNorm(Norm.FrobeniusNorm, _rowCount, _columnCount, _values);
}
///
/// Negate each element of this matrix and place the results into the result matrix.
///
/// The result of the negation.
protected override void DoNegate(Matrix result)
{
if (result is DenseMatrix denseResult)
{
LinearAlgebraControl.Provider.ScaleArray(-1, _values, denseResult._values);
return;
}
base.DoNegate(result);
}
///
/// Add a scalar to each element of the matrix and stores the result in the result vector.
///
/// The scalar to add.
/// The matrix to store the result of the addition.
protected override void DoAdd(double scalar, Matrix result)
{
if (result is DenseMatrix denseResult)
{
CommonParallel.For(0, _values.Length, 4096, (a, b) =>
{
var v = denseResult._values;
for (int i = a; i < b; i++)
{
v[i] = _values[i] + scalar;
}
});
}
else
{
base.DoAdd(scalar, result);
}
}
///
/// Adds another matrix to this matrix.
///
/// The matrix to add to this matrix.
/// The matrix to store the result of add
/// If the other matrix is .
/// If the two matrices don't have the same dimensions.
protected override void DoAdd(Matrix other, Matrix result)
{
// dense + dense = dense
if (other.Storage is DenseColumnMajorMatrixStorage denseOther && result.Storage is DenseColumnMajorMatrixStorage denseResult)
{
LinearAlgebraControl.Provider.AddArrays(_values, denseOther.Data, denseResult.Data);
return;
}
// dense + diagonal = any
if (other.Storage is DiagonalMatrixStorage diagonalOther)
{
Storage.CopyToUnchecked(result.Storage, ExistingData.Clear);
var diagonal = diagonalOther.Data;
for (int i = 0; i < diagonal.Length; i++)
{
result.At(i, i, result.At(i, i) + diagonal[i]);
}
return;
}
base.DoAdd(other, result);
}
///
/// Subtracts a scalar from each element of the matrix and stores the result in the result vector.
///
/// The scalar to subtract.
/// The matrix to store the result of the subtraction.
protected override void DoSubtract(double scalar, Matrix result)
{
if (result is DenseMatrix denseResult)
{
CommonParallel.For(0, _values.Length, 4096, (a, b) =>
{
var v = denseResult._values;
for (int i = a; i < b; i++)
{
v[i] = _values[i] - scalar;
}
});
}
else
{
base.DoSubtract(scalar, result);
}
}
///
/// Subtracts another matrix from this matrix.
///
/// The matrix to subtract.
/// The matrix to store the result of the subtraction.
protected override void DoSubtract(Matrix other, Matrix result)
{
// dense + dense = dense
if (other.Storage is DenseColumnMajorMatrixStorage denseOther && result.Storage is DenseColumnMajorMatrixStorage denseResult)
{
LinearAlgebraControl.Provider.SubtractArrays(_values, denseOther.Data, denseResult.Data);
return;
}
// dense + diagonal = matrix
if (other.Storage is DiagonalMatrixStorage diagonalOther)
{
CopyTo(result);
var diagonal = diagonalOther.Data;
for (int i = 0; i < diagonal.Length; i++)
{
result.At(i, i, result.At(i, i) - diagonal[i]);
}
return;
}
base.DoSubtract(other, result);
}
///
/// Multiplies each element of the matrix by a scalar and places results into the result matrix.
///
/// The scalar to multiply the matrix with.
/// The matrix to store the result of the multiplication.
protected override void DoMultiply(double scalar, Matrix result)
{
if (result is DenseMatrix denseResult)
{
LinearAlgebraControl.Provider.ScaleArray(scalar, _values, denseResult._values);
}
else
{
base.DoMultiply(scalar, result);
}
}
///
/// Multiplies this matrix with a vector and places the results into the result vector.
///
/// The vector to multiply with.
/// The result of the multiplication.
protected override void DoMultiply(Vector rightSide, Vector result)
{
if (rightSide is DenseVector denseRight && result is DenseVector denseResult)
{
LinearAlgebraControl.Provider.MatrixMultiply(
_values,
_rowCount,
_columnCount,
denseRight.Values,
denseRight.Count,
1,
denseResult.Values);
}
else
{
base.DoMultiply(rightSide, result);
}
}
///
/// Multiplies this matrix with another matrix and places the results into the result matrix.
///
/// The matrix to multiply with.
/// The result of the multiplication.
protected override void DoMultiply(Matrix other, Matrix result)
{
if (other is DenseMatrix denseOther && result is DenseMatrix denseResult)
{
LinearAlgebraControl.Provider.MatrixMultiply(
_values,
_rowCount,
_columnCount,
denseOther._values,
denseOther._rowCount,
denseOther._columnCount,
denseResult._values);
return;
}
if (other.Storage is DiagonalMatrixStorage diagonalOther)
{
var diagonal = diagonalOther.Data;
var d = Math.Min(ColumnCount, other.ColumnCount);
if (d < other.ColumnCount)
{
result.ClearSubMatrix(0, RowCount, ColumnCount, other.ColumnCount - ColumnCount);
}
int index = 0;
for (int j = 0; j < d; j++)
{
for (int i = 0; i < RowCount; i++)
{
result.At(i, j, _values[index]*diagonal[j]);
index++;
}
}
return;
}
base.DoMultiply(other, result);
}
///
/// Multiplies this matrix with transpose of another matrix and places the results into the result matrix.
///
/// The matrix to multiply with.
/// The result of the multiplication.
protected override void DoTransposeAndMultiply(Matrix other, Matrix result)
{
if (other is DenseMatrix denseOther && result is DenseMatrix denseResult)
{
LinearAlgebraControl.Provider.MatrixMultiplyWithUpdate(
Providers.LinearAlgebra.Transpose.DontTranspose,
Providers.LinearAlgebra.Transpose.Transpose,
1.0,
_values,
_rowCount,
_columnCount,
denseOther._values,
denseOther._rowCount,
denseOther._columnCount,
0.0,
denseResult._values);
return;
}
if (other.Storage is DiagonalMatrixStorage diagonalOther)
{
var diagonal = diagonalOther.Data;
var d = Math.Min(ColumnCount, other.RowCount);
if (d < other.RowCount)
{
result.ClearSubMatrix(0, RowCount, ColumnCount, other.RowCount - ColumnCount);
}
int index = 0;
for (int j = 0; j < d; j++)
{
for (int i = 0; i < RowCount; i++)
{
result.At(i, j, _values[index]*diagonal[j]);
index++;
}
}
return;
}
base.DoTransposeAndMultiply(other, result);
}
///
/// Multiplies the transpose of this matrix with a vector and places the results into the result vector.
///
/// The vector to multiply with.
/// The result of the multiplication.
protected override void DoTransposeThisAndMultiply(Vector rightSide, Vector result)
{
if (rightSide is DenseVector denseRight && result is DenseVector denseResult)
{
LinearAlgebraControl.Provider.MatrixMultiplyWithUpdate(
Providers.LinearAlgebra.Transpose.Transpose,
Providers.LinearAlgebra.Transpose.DontTranspose,
1.0,
_values,
_rowCount,
_columnCount,
denseRight.Values,
denseRight.Count,
1,
0.0,
denseResult.Values);
}
else
{
base.DoTransposeThisAndMultiply(rightSide, result);
}
}
///
/// Multiplies the transpose of this matrix with another matrix and places the results into the result matrix.
///
/// The matrix to multiply with.
/// The result of the multiplication.
protected override void DoTransposeThisAndMultiply(Matrix other, Matrix result)
{
if (other is DenseMatrix denseOther && result is DenseMatrix denseResult)
{
LinearAlgebraControl.Provider.MatrixMultiplyWithUpdate(
Providers.LinearAlgebra.Transpose.Transpose,
Providers.LinearAlgebra.Transpose.DontTranspose,
1.0,
_values,
_rowCount,
_columnCount,
denseOther._values,
denseOther._rowCount,
denseOther._columnCount,
0.0,
denseResult._values);
return;
}
if (other.Storage is DiagonalMatrixStorage diagonalOther)
{
var diagonal = diagonalOther.Data;
var d = Math.Min(RowCount, other.ColumnCount);
if (d < other.ColumnCount)
{
result.ClearSubMatrix(0, ColumnCount, RowCount, other.ColumnCount - RowCount);
}
int index = 0;
for (int i = 0; i < ColumnCount; i++)
{
for (int j = 0; j < d; j++)
{
result.At(i, j, _values[index]*diagonal[j]);
index++;
}
index += (RowCount - d);
}
return;
}
base.DoTransposeThisAndMultiply(other, result);
}
///
/// Divides each element of the matrix by a scalar and places results into the result matrix.
///
/// The scalar to divide the matrix with.
/// The matrix to store the result of the division.
protected override void DoDivide(double divisor, Matrix result)
{
if (result is DenseMatrix denseResult)
{
LinearAlgebraControl.Provider.ScaleArray(1.0 / divisor, _values, denseResult._values);
}
else
{
base.DoDivide(divisor, result);
}
}
///
/// Pointwise multiplies this matrix with another matrix and stores the result into the result matrix.
///
/// The matrix to pointwise multiply with this one.
/// The matrix to store the result of the pointwise multiplication.
protected override void DoPointwiseMultiply(Matrix other, Matrix result)
{
if (other is DenseMatrix denseOther && result is DenseMatrix denseResult)
{
LinearAlgebraControl.Provider.PointWiseMultiplyArrays(_values, denseOther._values, denseResult._values);
}
else
{
base.DoPointwiseMultiply(other, result);
}
}
///
/// Pointwise divide this matrix by another matrix and stores the result into the result matrix.
///
/// The matrix to pointwise divide this one by.
/// The matrix to store the result of the pointwise division.
protected override void DoPointwiseDivide(Matrix divisor, Matrix result)
{
if (divisor is DenseMatrix denseDivisor && result is DenseMatrix denseResult)
{
LinearAlgebraControl.Provider.PointWiseDivideArrays(_values, denseDivisor._values, denseResult._values);
}
else
{
base.DoPointwiseDivide(divisor, result);
}
}
///
/// Pointwise raise this matrix to an exponent and store the result into the result matrix.
///
/// The exponent to raise this matrix values to.
/// The vector to store the result of the pointwise power.
protected override void DoPointwisePower(Matrix exponent, Matrix result)
{
if (exponent is DenseMatrix denseExponent && result is DenseMatrix denseResult)
{
LinearAlgebraControl.Provider.PointWisePowerArrays(_values, denseExponent._values, denseResult._values);
}
else
{
base.DoPointwisePower(exponent, result);
}
}
///
/// Computes the canonical modulus, where the result has the sign of the divisor,
/// for the given divisor each element of the matrix.
///
/// The scalar denominator to use.
/// Matrix to store the results in.
protected override void DoModulus(double divisor, Matrix result)
{
if (result is DenseMatrix denseResult)
{
if (!ReferenceEquals(this, result))
{
CopyTo(result);
}
CommonParallel.For(0, _values.Length, (a, b) =>
{
var v = denseResult._values;
for (int i = a; i < b; i++)
{
v[i] = Euclid.Modulus(v[i], divisor);
}
});
}
else
{
base.DoModulus(divisor, result);
}
}
///
/// Computes the canonical modulus, where the result has the sign of the divisor,
/// for the given dividend for each element of the matrix.
///
/// The scalar numerator to use.
/// A vector to store the results in.
protected override void DoModulusByThis(double dividend, Matrix result)
{
if (result is DenseMatrix denseResult)
{
CommonParallel.For(0, _values.Length, 4096, (a, b) =>
{
var v = denseResult._values;
for (int i = a; i < b; i++)
{
v[i] = Euclid.Modulus(dividend, _values[i]);
}
});
}
else
{
base.DoModulusByThis(dividend, result);
}
}
///
/// Computes the remainder (% operator), where the result has the sign of the dividend,
/// for the given divisor each element of the matrix.
///
/// The scalar denominator to use.
/// Matrix to store the results in.
protected override void DoRemainder(double divisor, Matrix result)
{
if (result is DenseMatrix denseResult)
{
if (!ReferenceEquals(this, result))
{
CopyTo(result);
}
CommonParallel.For(0, _values.Length, (a, b) =>
{
var v = denseResult._values;
for (int i = a; i < b; i++)
{
v[i] %= divisor;
}
});
}
else
{
base.DoRemainder(divisor, result);
}
}
///
/// Computes the remainder (% operator), where the result has the sign of the dividend,
/// for the given dividend for each element of the matrix.
///
/// The scalar numerator to use.
/// A vector to store the results in.
protected override void DoRemainderByThis(double dividend, Matrix result)
{
if (result is DenseMatrix denseResult)
{
CommonParallel.For(0, _values.Length, 4096, (a, b) =>
{
var v = denseResult._values;
for (int i = a; i < b; i++)
{
v[i] = dividend % _values[i];
}
});
}
else
{
base.DoRemainderByThis(dividend, result);
}
}
///
/// Computes the trace of this matrix.
///
/// The trace of this matrix
/// If the matrix is not square
public override double Trace()
{
if (_rowCount != _columnCount)
{
throw new ArgumentException("Matrix must be square.");
}
var sum = 0.0;
for (var i = 0; i < _rowCount; i++)
{
sum += _values[(i * _rowCount) + i];
}
return sum;
}
///
/// Adds two matrices together and returns the results.
///
/// This operator will allocate new memory for the result. It will
/// choose the representation of either or depending on which
/// is denser.
/// The left matrix to add.
/// The right matrix to add.
/// The result of the addition.
/// If and don't have the same dimensions.
/// If or is .
public static DenseMatrix operator +(DenseMatrix leftSide, DenseMatrix rightSide)
{
if (rightSide == null)
{
throw new ArgumentNullException(nameof(rightSide));
}
if (leftSide == null)
{
throw new ArgumentNullException(nameof(leftSide));
}
if (leftSide._rowCount != rightSide._rowCount || leftSide._columnCount != rightSide._columnCount)
{
throw DimensionsDontMatch(leftSide, rightSide);
}
return (DenseMatrix)leftSide.Add(rightSide);
}
///
/// Returns a Matrix containing the same values of .
///
/// The matrix to get the values from.
/// A matrix containing a the same values as .
/// If is .
public static DenseMatrix operator +(DenseMatrix rightSide)
{
if (rightSide == null)
{
throw new ArgumentNullException(nameof(rightSide));
}
return (DenseMatrix)rightSide.Clone();
}
///
/// Subtracts two matrices together and returns the results.
///
/// This operator will allocate new memory for the result. It will
/// choose the representation of either or depending on which
/// is denser.
/// The left matrix to subtract.
/// The right matrix to subtract.
/// The result of the addition.
/// If and don't have the same dimensions.
/// If or is .
public static DenseMatrix operator -(DenseMatrix leftSide, DenseMatrix rightSide)
{
if (rightSide == null)
{
throw new ArgumentNullException(nameof(rightSide));
}
if (leftSide == null)
{
throw new ArgumentNullException(nameof(leftSide));
}
if (leftSide._rowCount != rightSide._rowCount || leftSide._columnCount != rightSide._columnCount)
{
throw DimensionsDontMatch(leftSide, rightSide);
}
return (DenseMatrix)leftSide.Subtract(rightSide);
}
///
/// Negates each element of the matrix.
///
/// The matrix to negate.
/// A matrix containing the negated values.
/// If is .
public static DenseMatrix operator -(DenseMatrix rightSide)
{
if (rightSide == null)
{
throw new ArgumentNullException(nameof(rightSide));
}
return (DenseMatrix)rightSide.Negate();
}
///
/// Multiplies a Matrix by a constant and returns the result.
///
/// The matrix to multiply.
/// The constant to multiply the matrix by.
/// The result of the multiplication.
/// If is .
public static DenseMatrix operator *(DenseMatrix leftSide, double rightSide)
{
if (leftSide == null)
{
throw new ArgumentNullException(nameof(leftSide));
}
return (DenseMatrix)leftSide.Multiply(rightSide);
}
///
/// Multiplies a Matrix by a constant and returns the result.
///
/// The matrix to multiply.
/// The constant to multiply the matrix by.
/// The result of the multiplication.
/// If is .
public static DenseMatrix operator *(double leftSide, DenseMatrix rightSide)
{
if (rightSide == null)
{
throw new ArgumentNullException(nameof(rightSide));
}
return (DenseMatrix)rightSide.Multiply(leftSide);
}
///
/// Multiplies two matrices.
///
/// This operator will allocate new memory for the result. It will
/// choose the representation of either or depending on which
/// is denser.
/// The left matrix to multiply.
/// The right matrix to multiply.
/// The result of multiplication.
/// If or is .
/// If the dimensions of or don't conform.
public static DenseMatrix operator *(DenseMatrix leftSide, DenseMatrix rightSide)
{
if (leftSide == null)
{
throw new ArgumentNullException(nameof(leftSide));
}
if (rightSide == null)
{
throw new ArgumentNullException(nameof(rightSide));
}
if (leftSide._columnCount != rightSide._rowCount)
{
throw DimensionsDontMatch(leftSide, rightSide);
}
return (DenseMatrix)leftSide.Multiply(rightSide);
}
///
/// Multiplies a Matrix and a Vector.
///
/// The matrix to multiply.
/// The vector to multiply.
/// The result of multiplication.
/// If or is .
public static DenseVector operator *(DenseMatrix leftSide, DenseVector rightSide)
{
if (leftSide == null)
{
throw new ArgumentNullException(nameof(leftSide));
}
return (DenseVector)leftSide.Multiply(rightSide);
}
///
/// Multiplies a Vector and a Matrix.
///
/// The vector to multiply.
/// The matrix to multiply.
/// The result of multiplication.
/// If or is .
public static DenseVector operator *(DenseVector leftSide, DenseMatrix rightSide)
{
if (rightSide == null)
{
throw new ArgumentNullException(nameof(rightSide));
}
return (DenseVector)rightSide.LeftMultiply(leftSide);
}
///
/// Multiplies a Matrix by a constant and returns the result.
///
/// The matrix to multiply.
/// The constant to multiply the matrix by.
/// The result of the multiplication.
/// If is .
public static DenseMatrix operator %(DenseMatrix leftSide, double rightSide)
{
if (leftSide == null)
{
throw new ArgumentNullException(nameof(leftSide));
}
return (DenseMatrix)leftSide.Remainder(rightSide);
}
///
/// Evaluates whether this matrix is symmetric.
///
public override bool IsSymmetric()
{
if (RowCount != ColumnCount)
{
return false;
}
for (var j = 0; j < ColumnCount; j++)
{
var index = j * RowCount;
for (var i = j + 1; i < RowCount; i++)
{
if (_values[(i*ColumnCount) + j] != _values[index + i])
{
return false;
}
}
}
return true;
}
public override Cholesky Cholesky()
{
return DenseCholesky.Create(this);
}
public override LU LU()
{
return DenseLU.Create(this);
}
public override QR QR(QRMethod method = QRMethod.Thin)
{
return DenseQR.Create(this, method);
}
public override GramSchmidt GramSchmidt()
{
return DenseGramSchmidt.Create(this);
}
public override Svd Svd(bool computeVectors = true)
{
return DenseSvd.Create(this, computeVectors);
}
public override Evd Evd(Symmetricity symmetricity = Symmetricity.Unknown)
{
return DenseEvd.Create(this, symmetricity);
}
}
}