// // Math.NET Numerics, part of the Math.NET Project // http://numerics.mathdotnet.com // http://github.com/mathnet/mathnet-numerics // // Copyright (c) 2009-2013 Math.NET // // Permission is hereby granted, free of charge, to any person // obtaining a copy of this software and associated documentation // files (the "Software"), to deal in the Software without // restriction, including without limitation the rights to use, // copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the // Software is furnished to do so, subject to the following // conditions: // // The above copyright notice and this permission notice shall be // included in all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES // OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT // HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, // WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR // OTHER DEALINGS IN THE SOFTWARE. // using System; using IStation.Numerics.Providers.LinearAlgebra; namespace IStation.Numerics.LinearAlgebra.Double.Factorization { /// /// A class which encapsulates the functionality of the singular value decomposition (SVD) for . /// Suppose M is an m-by-n matrix whose entries are real numbers. /// Then there exists a factorization of the form M = UΣVT where: /// - U is an m-by-m unitary matrix; /// - Σ is m-by-n diagonal matrix with nonnegative real numbers on the diagonal; /// - VT denotes transpose of V, an n-by-n unitary matrix; /// Such a factorization is called a singular-value decomposition of M. A common convention is to order the diagonal /// entries Σ(i,i) in descending order. In this case, the diagonal matrix Σ is uniquely determined /// by M (though the matrices U and V are not). The diagonal entries of Σ are known as the singular values of M. /// /// /// The computation of the singular value decomposition is done at construction time. /// internal sealed class DenseSvd : Svd { /// /// Initializes a new instance of the class. This object will compute the /// the singular value decomposition when the constructor is called and cache it's decomposition. /// /// The matrix to factor. /// Compute the singular U and VT vectors or not. /// If is null. /// If SVD algorithm failed to converge with matrix . public static DenseSvd Create(DenseMatrix matrix, bool computeVectors) { var nm = Math.Min(matrix.RowCount, matrix.ColumnCount); var s = new DenseVector(nm); var u = new DenseMatrix(matrix.RowCount); var vt = new DenseMatrix(matrix.ColumnCount); LinearAlgebraControl.Provider.SingularValueDecomposition(computeVectors, ((DenseMatrix) matrix.Clone()).Values, matrix.RowCount, matrix.ColumnCount, s.Values, u.Values, vt.Values); return new DenseSvd(s, u, vt, computeVectors); } DenseSvd(Vector s, Matrix u, Matrix vt, bool vectorsComputed) : base(s, u, vt, vectorsComputed) { } /// /// Solves a system of linear equations, AX = B, with A SVD factorized. /// /// The right hand side , B. /// The left hand side , X. public override void Solve(Matrix input, Matrix result) { if (!VectorsComputed) { throw new InvalidOperationException("The singular vectors were not computed."); } // The solution X should have the same number of columns as B if (input.ColumnCount != result.ColumnCount) { throw new ArgumentException("Matrix column dimensions must agree."); } // The dimension compatibility conditions for X = A\B require the two matrices A and B to have the same number of rows if (U.RowCount != input.RowCount) { throw new ArgumentException("Matrix row dimensions must agree."); } // The solution X row dimension is equal to the column dimension of A if (VT.ColumnCount != result.RowCount) { throw new ArgumentException("Matrix column dimensions must agree."); } if (input is DenseMatrix dinput && result is DenseMatrix dresult) { LinearAlgebraControl.Provider.SvdSolveFactored(U.RowCount, VT.ColumnCount, ((DenseVector) S).Values, ((DenseMatrix) U).Values, ((DenseMatrix) VT).Values, dinput.Values, input.ColumnCount, dresult.Values); } else { throw new NotSupportedException("Can only do SVD factorization for dense matrices at the moment."); } } /// /// Solves a system of linear equations, Ax = b, with A SVD factorized. /// /// The right hand side vector, b. /// The left hand side , x. public override void Solve(Vector input, Vector result) { if (!VectorsComputed) { throw new InvalidOperationException("The singular vectors were not computed."); } // Ax=b where A is an m x n matrix // Check that b is a column vector with m entries if (U.RowCount != input.Count) { throw new ArgumentException("All vectors must have the same dimensionality."); } // Check that x is a column vector with n entries if (VT.ColumnCount != result.Count) { throw Matrix.DimensionsDontMatch(VT, result); } if (input is DenseVector dinput && result is DenseVector dresult) { LinearAlgebraControl.Provider.SvdSolveFactored(U.RowCount, VT.ColumnCount, ((DenseVector) S).Values, ((DenseMatrix) U).Values, ((DenseMatrix) VT).Values, dinput.Values, 1, dresult.Values); } else { throw new NotSupportedException("Can only do SVD factorization for dense vectors at the moment."); } } } }