//
// Math.NET Numerics, part of the Math.NET Project
// http://numerics.mathdotnet.com
// http://github.com/mathnet/mathnet-numerics
//
// Copyright (c) 2009-2013 Math.NET
//
// Permission is hereby granted, free of charge, to any person
// obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without
// restriction, including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following
// conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
//
using System;
using IStation.Numerics.Threading;
namespace IStation.Numerics.LinearAlgebra.Double.Factorization
{
///
/// A class which encapsulates the functionality of a Cholesky factorization for user matrices.
/// For a symmetric, positive definite matrix A, the Cholesky factorization
/// is an lower triangular matrix L so that A = L*L'.
///
///
/// The computation of the Cholesky factorization is done at construction time. If the matrix is not symmetric
/// or positive definite, the constructor will throw an exception.
///
internal sealed class UserCholesky : Cholesky
{
///
/// Computes the Cholesky factorization in-place.
///
/// On entry, the matrix to factor. On exit, the Cholesky factor matrix
/// If is null.
/// If is not a square matrix.
/// If is not positive definite.
static void DoCholesky(Matrix factor)
{
if (factor.RowCount != factor.ColumnCount)
{
throw new ArgumentException("Matrix must be square.");
}
var tmpColumn = new double[factor.RowCount];
// Main loop - along the diagonal
for (var ij = 0; ij < factor.RowCount; ij++)
{
// "Pivot" element
var tmpVal = factor.At(ij, ij);
if (tmpVal > 0.0)
{
tmpVal = Math.Sqrt(tmpVal);
factor.At(ij, ij, tmpVal);
tmpColumn[ij] = tmpVal;
// Calculate multipliers and copy to local column
// Current column, below the diagonal
for (var i = ij + 1; i < factor.RowCount; i++)
{
factor.At(i, ij, factor.At(i, ij)/tmpVal);
tmpColumn[i] = factor.At(i, ij);
}
// Remaining columns, below the diagonal
DoCholeskyStep(factor, factor.RowCount, ij + 1, factor.RowCount, tmpColumn, Control.MaxDegreeOfParallelism);
}
else
{
throw new ArgumentException("Matrix must be positive definite.");
}
for (var i = ij + 1; i < factor.RowCount; i++)
{
factor.At(ij, i, 0.0);
}
}
}
///
/// Initializes a new instance of the class. This object will compute the
/// Cholesky factorization when the constructor is called and cache it's factorization.
///
/// The matrix to factor.
/// If is null.
/// If is not a square matrix.
/// If is not positive definite.
public static UserCholesky Create(Matrix matrix)
{
// Create a new matrix for the Cholesky factor, then perform factorization (while overwriting).
var factor = matrix.Clone();
DoCholesky(factor);
return new UserCholesky(factor);
}
///
/// Calculates the Cholesky factorization of the input matrix.
///
/// The matrix to be factorized.
/// If is null.
/// If is not a square matrix.
/// If is not positive definite.
/// If does not have the same dimensions as the existing factor.
public override void Factorize(Matrix matrix)
{
if (matrix.RowCount != Factor.RowCount || matrix.ColumnCount != Factor.ColumnCount)
{
throw Matrix.DimensionsDontMatch(matrix, Factor);
}
matrix.CopyTo(Factor);
DoCholesky(Factor);
}
UserCholesky(Matrix factor)
: base(factor)
{
}
///
/// Calculate Cholesky step
///
/// Factor matrix
/// Number of rows
/// Column start
/// Total columns
/// Multipliers calculated previously
/// Number of available processors
static void DoCholeskyStep(Matrix data, int rowDim, int firstCol, int colLimit, double[] multipliers, int availableCores)
{
var tmpColCount = colLimit - firstCol;
if ((availableCores > 1) && (tmpColCount > 200))
{
var tmpSplit = firstCol + (tmpColCount/3);
var tmpCores = availableCores/2;
CommonParallel.Invoke(
() => DoCholeskyStep(data, rowDim, firstCol, tmpSplit, multipliers, tmpCores),
() => DoCholeskyStep(data, rowDim, tmpSplit, colLimit, multipliers, tmpCores));
}
else
{
for (var j = firstCol; j < colLimit; j++)
{
var tmpVal = multipliers[j];
for (var i = j; i < rowDim; i++)
{
data.At(i, j, data.At(i, j) - (multipliers[i]*tmpVal));
}
}
}
}
///
/// Solves a system of linear equations, AX = B, with A Cholesky factorized.
///
/// The right hand side , B.
/// The left hand side , X.
public override void Solve(Matrix input, Matrix result)
{
if (result.RowCount != input.RowCount)
{
throw new ArgumentException("Matrix row dimensions must agree.");
}
if (result.ColumnCount != input.ColumnCount)
{
throw new ArgumentException("Matrix column dimensions must agree.");
}
if (input.RowCount != Factor.RowCount)
{
throw Matrix.DimensionsDontMatch(input, Factor);
}
input.CopyTo(result);
var order = Factor.RowCount;
for (var c = 0; c < result.ColumnCount; c++)
{
// Solve L*Y = B;
double sum;
for (var i = 0; i < order; i++)
{
sum = result.At(i, c);
for (var k = i - 1; k >= 0; k--)
{
sum -= Factor.At(i, k)*result.At(k, c);
}
result.At(i, c, sum/Factor.At(i, i));
}
// Solve L'*X = Y;
for (var i = order - 1; i >= 0; i--)
{
sum = result.At(i, c);
for (var k = i + 1; k < order; k++)
{
sum -= Factor.At(k, i)*result.At(k, c);
}
result.At(i, c, sum/Factor.At(i, i));
}
}
}
///
/// Solves a system of linear equations, Ax = b, with A Cholesky factorized.
///
/// The right hand side vector, b.
/// The left hand side , x.
public override void Solve(Vector input, Vector result)
{
if (input.Count != result.Count)
{
throw new ArgumentException("All vectors must have the same dimensionality.");
}
if (input.Count != Factor.RowCount)
{
throw Matrix.DimensionsDontMatch(input, Factor);
}
input.CopyTo(result);
var order = Factor.RowCount;
// Solve L*Y = B;
double sum;
for (var i = 0; i < order; i++)
{
sum = result[i];
for (var k = i - 1; k >= 0; k--)
{
sum -= Factor.At(i, k)*result[k];
}
result[i] = sum/Factor.At(i, i);
}
// Solve L'*X = Y;
for (var i = order - 1; i >= 0; i--)
{
sum = result[i];
for (var k = i + 1; k < order; k++)
{
sum -= Factor.At(k, i)*result[k];
}
result[i] = sum/Factor.At(i, i);
}
}
}
}