//
// Math.NET Numerics, part of the Math.NET Project
// http://numerics.mathdotnet.com
// http://github.com/mathnet/mathnet-numerics
//
// Copyright (c) 2009-2016 Math.NET
//
// Permission is hereby granted, free of charge, to any person
// obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without
// restriction, including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following
// conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
//
using System;
namespace IStation.Numerics.OdeSolvers
{
public static class AdamsBashforth
{
///
/// First Order AB method(same as Forward Euler)
///
/// Initial value
/// Start Time
/// End Time
/// Size of output array(the larger, the finer)
/// ode model
/// approximation with size N
public static double[] FirstOrder(double y0, double start, double end, int N, Func f)
{
double dt = (end - start) / (N - 1);
double t = start;
double[] y = new double[N];
y[0] = y0;
for (int i = 1; i < N; i++)
{
y[i] = y0 + dt * f(t, y0);
t += dt;
y0 = y[i];
}
return y;
}
///
/// Second Order AB Method
///
/// Initial value 1
/// Start Time
/// End Time
/// Size of output array(the larger, the finer)
/// ode model
/// approximation with size N
public static double[] SecondOrder(double y0, double start, double end, int N, Func f)
{
double dt = (end - start) / (N - 1);
double t = start;
double[] y = new double[N];
double k1 = f(t, y0);
double k2 = f(t + dt, y0 + dt * k1);
double y1 = y0 + 0.5 * dt * (k1 + k2);
y[0] = y0;
y[1] = y1;
for (int i = 2; i < N; i++)
{
y[i] = y1 + dt * (1.5 * f(t + dt, y1) - 0.5 * f(t, y0));
t += dt;
y0 = y[i - 1];
y1 = y[i];
}
return y;
}
///
/// Third Order AB Method
///
/// Initial value 1
/// Start Time
/// End Time
/// Size of output array(the larger, the finer)
/// ode model
/// approximation with size N
public static double[] ThirdOrder(double y0, double start, double end, int N, Func f)
{
double dt = (end - start) / (N - 1);
double t = start;
double[] y = new double[N];
double k1 = 0;
double k2 = 0;
double k3 = 0;
double k4 = 0;
y[0] = y0;
for (int i = 1; i < 3; i++)
{
k1 = dt * f(t, y0);
k2 = dt * f(t + dt / 2, y0 + k1 / 2);
k3 = dt * f(t + dt / 2, y0 + k2 / 2);
k4 = dt * f(t + dt, y0 + k3);
y[i] = y0 + (k1 + 2 * k2 + 2 * k3 + k4) / 6;
t += dt;
y0 = y[i];
}
for (int i = 3; i < N; i++)
{
y[i] = y[i - 1] + dt * (23 * f(t, y[i - 1]) - 16 * f(t - dt, y[i - 2]) + 5 * f(t - 2 * dt, y[i - 3])) / 12.0;
t += dt;
}
return y;
}
///
/// Fourth Order AB Method
///
/// Initial value 1
/// Start Time
/// End Time
/// Size of output array(the larger, the finer)
/// ode model
/// approximation with size N
public static double[] FourthOrder(double y0, double start, double end, int N, Func f)
{
double dt = (end - start) / (N - 1);
double t = start;
double[] y = new double[N];
double k1 = 0;
double k2 = 0;
double k3 = 0;
double k4 = 0;
y[0] = y0;
for (int i = 1; i < 4; i++)
{
k1 = dt * f(t, y0);
k2 = dt * f(t + dt / 2, y0 + k1 / 2);
k3 = dt * f(t + dt / 2, y0 + k2 / 2);
k4 = dt * f(t + dt, y0 + k3);
y[i] = y0 + (k1 + 2 * k2 + 2 * k3 + k4) / 6;
t += dt;
y0 = y[i];
}
for (int i = 4; i < N; i++)
{
y[i] = y[i - 1] + dt * (55 * f(t, y[i - 1]) - 59 * f(t - dt, y[i - 2]) + 37 * f(t - 2 * dt, y[i - 3]) - 9 * f(t - 3 * dt, y[i - 4])) / 24.0;
t += dt;
}
return y;
}
}
}