//
// Math.NET Numerics, part of the Math.NET Project
// http://numerics.mathdotnet.com
// http://github.com/mathnet/mathnet-numerics
//
// Copyright (c) 2009-2014 Math.NET
//
// Permission is hereby granted, free of charge, to any person
// obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without
// restriction, including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following
// conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
//
//
// Cephes Math Library, Stephen L. Moshier
// ALGLIB 2.0.1, Sergey Bochkanov
//
using System;
// ReSharper disable CheckNamespace
namespace IStation.Numerics
// ReSharper restore CheckNamespace
{
public static partial class SpecialFunctions
{
///
/// Computes the logarithm of the Euler Beta function.
///
/// The first Beta parameter, a positive real number.
/// The second Beta parameter, a positive real number.
/// The logarithm of the Euler Beta function evaluated at z,w.
/// If or are not positive.
public static double BetaLn(double z, double w)
{
if (z <= 0.0)
{
throw new ArgumentException("Value must be positive.", nameof(z));
}
if (w <= 0.0)
{
throw new ArgumentException("Value must be positive.", nameof(w));
}
return GammaLn(z) + GammaLn(w) - GammaLn(z + w);
}
///
/// Computes the Euler Beta function.
///
/// The first Beta parameter, a positive real number.
/// The second Beta parameter, a positive real number.
/// The Euler Beta function evaluated at z,w.
/// If or are not positive.
public static double Beta(double z, double w)
{
return Math.Exp(BetaLn(z, w));
}
///
/// Returns the lower incomplete (unregularized) beta function
/// B(a,b,x) = int(t^(a-1)*(1-t)^(b-1),t=0..x) for real a > 0, b > 0, 1 >= x >= 0.
///
/// The first Beta parameter, a positive real number.
/// The second Beta parameter, a positive real number.
/// The upper limit of the integral.
/// The lower incomplete (unregularized) beta function.
public static double BetaIncomplete(double a, double b, double x)
{
return BetaRegularized(a, b, x)*Beta(a, b);
}
///
/// Returns the regularized lower incomplete beta function
/// I_x(a,b) = 1/Beta(a,b) * int(t^(a-1)*(1-t)^(b-1),t=0..x) for real a > 0, b > 0, 1 >= x >= 0.
///
/// The first Beta parameter, a positive real number.
/// The second Beta parameter, a positive real number.
/// The upper limit of the integral.
/// The regularized lower incomplete beta function.
public static double BetaRegularized(double a, double b, double x)
{
if (a < 0.0)
{
throw new ArgumentOutOfRangeException(nameof(a), "Value must not be negative (zero is ok).");
}
if (b < 0.0)
{
throw new ArgumentOutOfRangeException(nameof(b), "Value must not be negative (zero is ok).");
}
if (x < 0.0 || x > 1.0)
{
throw new ArgumentOutOfRangeException(nameof(x), $"Value is expected to be between 0.0 and 1.0 (including 0.0 and 1.0).");
}
var bt = (x == 0.0 || x == 1.0)
? 0.0
: Math.Exp(GammaLn(a + b) - GammaLn(a) - GammaLn(b) + (a*Math.Log(x)) + (b*Math.Log(1.0 - x)));
var symmetryTransformation = x >= (a + 1.0)/(a + b + 2.0);
/* Continued fraction representation */
var eps = Precision.DoublePrecision;
var fpmin = 0.0.Increment()/eps;
if (symmetryTransformation)
{
x = 1.0 - x;
var swap = a;
a = b;
b = swap;
}
var qab = a + b;
var qap = a + 1.0;
var qam = a - 1.0;
var c = 1.0;
var d = 1.0 - (qab*x/qap);
if (Math.Abs(d) < fpmin)
{
d = fpmin;
}
d = 1.0/d;
var h = d;
for (int m = 1, m2 = 2; m <= 50000; m++, m2 += 2)
{
var aa = m*(b - m)*x/((qam + m2)*(a + m2));
d = 1.0 + (aa*d);
if (Math.Abs(d) < fpmin)
{
d = fpmin;
}
c = 1.0 + (aa/c);
if (Math.Abs(c) < fpmin)
{
c = fpmin;
}
d = 1.0/d;
h *= d*c;
aa = -(a + m)*(qab + m)*x/((a + m2)*(qap + m2));
d = 1.0 + (aa*d);
if (Math.Abs(d) < fpmin)
{
d = fpmin;
}
c = 1.0 + (aa/c);
if (Math.Abs(c) < fpmin)
{
c = fpmin;
}
d = 1.0/d;
var del = d*c;
h *= del;
if (Math.Abs(del - 1.0) <= eps)
{
return symmetryTransformation ? 1.0 - (bt*h/a) : bt*h/a;
}
}
return symmetryTransformation ? 1.0 - (bt*h/a) : bt*h/a;
}
}
}