//
// Math.NET Numerics, part of the Math.NET Project
// http://numerics.mathdotnet.com
// http://github.com/mathnet/mathnet-numerics
//
// Copyright (c) 2009-2020 Math.NET
//
// Permission is hereby granted, free of charge, to any person
// obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without
// restriction, including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following
// conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
//
//
// Andrew J. Willshire
//
using System;
using System.Linq;
namespace IStation.Numerics
{
public static partial class SpecialFunctions
{
//Rising and falling factorials - reference here:
//https://en.wikipedia.org/wiki/Falling_and_rising_factorials
///
/// Computes the Rising Factorial (Pochhammer function) x -> (x)n, n>= 0. see: https://en.wikipedia.org/wiki/Falling_and_rising_factorials
///
/// The real value of the Rising Factorial for x and n
public static double RisingFactorial(double x, int n)
{
double accumulator = 1.0;
for (int k = 0; k < n; k++)
{
accumulator *= (x + k);
}
return accumulator;
}
///
/// Computes the Falling Factorial (Pochhammer function) x -> x(n), n>= 0. see: https://en.wikipedia.org/wiki/Falling_and_rising_factorials
///
/// The real value of the Falling Factorial for x and n
public static double FallingFactorial(double x, int n)
{
double accumulator = 1.0;
for (int k = 0; k < n; k++)
{
accumulator *= (x - k);
}
return accumulator;
}
///
/// A generalized hypergeometric series is a power series in which the ratio of successive coefficients indexed by n is a rational function of n.
/// This is the most common pFq(a1, ..., ap; b1,...,bq; z) representation
/// see: https://en.wikipedia.org/wiki/Generalized_hypergeometric_function
///
/// The list of coefficients in the numerator
/// The list of coefficients in the denominator
/// The variable in the power series
/// The value of the Generalized HyperGeometric Function.
public static double GeneralizedHypergeometric(double[] a, double[] b, int z)
{
const double epsilon = 0.000000000000001;
double cumulatives = 0.0;
double currentIncrement;
int n = 0;
do
{
currentIncrement = HGIncrement(a, b, z, n);
cumulatives += currentIncrement;
n += 1;
}
while (Math.Abs(currentIncrement) > epsilon && Math.Abs(currentIncrement) > 0 && currentIncrement.IsFinite());
return cumulatives;
}
//Calculate each iteration of the function
private static double HGIncrement(double[] a, double[] b, int z, int currentN)
{
double incrementAs = 1.0;
double incrementBs = 1.0;
double[] incrementAArray = new double[a.Length];
double[] incrementBArray = new double[b.Length];
for (int p = 0; p < a.Length; p++)
{
incrementAs *= RisingFactorial(a[p], currentN);
incrementAArray[p] = RisingFactorial(a[p], currentN);
}
for (int q = 0; q < b.Length; q++)
{
incrementBs *= RisingFactorial(b[q], currentN);
incrementBArray[q] = RisingFactorial(b[q], currentN);
}
double numZeros = (from x in incrementAArray where x == 0 select x).Count();
double numPoles = (from x in incrementBArray where x == 0 select x).Count();
if (numZeros > 0 && numZeros >= numPoles)
{
return 0.0;
}
else if (numPoles > 0 && numPoles > numZeros)
{
return double.PositiveInfinity;
}
else
{
return incrementAs / incrementBs * Math.Pow(z, currentN) / Factorial(currentN);
}
}
}
}