// // Math.NET Numerics, part of the Math.NET Project // http://numerics.mathdotnet.com // http://github.com/mathnet/mathnet-numerics // // Copyright (c) 2009-2010 Math.NET // // Permission is hereby granted, free of charge, to any person // obtaining a copy of this software and associated documentation // files (the "Software"), to deal in the Software without // restriction, including without limitation the rights to use, // copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the // Software is furnished to do so, subject to the following // conditions: // // The above copyright notice and this permission notice shall be // included in all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES // OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT // HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, // WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR // OTHER DEALINGS IN THE SOFTWARE. // using System; using Complex = System.Numerics.Complex; // ReSharper disable CheckNamespace namespace IStation.Numerics // ReSharper restore CheckNamespace { public partial class SpecialFunctions { /// /// Numerically stable exponential minus one, i.e. x -> exp(x)-1 /// /// A number specifying a power. /// Returns exp(power)-1. public static double ExponentialMinusOne(double power) { double x = Math.Abs(power); if (x > 0.1) { return Math.Exp(power) - 1.0; } if (x < x.PositiveEpsilonOf()) { return x; } // Series Expansion to x^k / k! int k = 0; double term = 1.0; return Evaluate.Series( () => { k++; term *= power; term /= k; return term; }); } /// /// Numerically stable hypotenuse of a right angle triangle, i.e. (a,b) -> sqrt(a^2 + b^2) /// /// The length of side a of the triangle. /// The length of side b of the triangle. /// Returns sqrt(a2 + b2) without underflow/overflow. public static Complex Hypotenuse(Complex a, Complex b) { if (a.Magnitude > b.Magnitude) { var r = b.Magnitude/a.Magnitude; return a.Magnitude*Math.Sqrt(1 + (r*r)); } if (b != 0.0) { // NOTE (ruegg): not "!b.AlmostZero()" to avoid convergence issues (e.g. in SVD algorithm) var r = a.Magnitude/b.Magnitude; return b.Magnitude*Math.Sqrt(1 + (r*r)); } return 0d; } /// /// Numerically stable hypotenuse of a right angle triangle, i.e. (a,b) -> sqrt(a^2 + b^2) /// /// The length of side a of the triangle. /// The length of side b of the triangle. /// Returns sqrt(a2 + b2) without underflow/overflow. public static Complex32 Hypotenuse(Complex32 a, Complex32 b) { if (a.Magnitude > b.Magnitude) { var r = b.Magnitude/a.Magnitude; return a.Magnitude*(float)Math.Sqrt(1 + (r*r)); } if (b != 0.0f) { // NOTE (ruegg): not "!b.AlmostZero()" to avoid convergence issues (e.g. in SVD algorithm) var r = a.Magnitude/b.Magnitude; return b.Magnitude*(float)Math.Sqrt(1 + (r*r)); } return 0f; } /// /// Numerically stable hypotenuse of a right angle triangle, i.e. (a,b) -> sqrt(a^2 + b^2) /// /// The length of side a of the triangle. /// The length of side b of the triangle. /// Returns sqrt(a2 + b2) without underflow/overflow. public static double Hypotenuse(double a, double b) { if (Math.Abs(a) > Math.Abs(b)) { double r = b/a; return Math.Abs(a)*Math.Sqrt(1 + (r*r)); } if (b != 0.0) { // NOTE (ruegg): not "!b.AlmostZero()" to avoid convergence issues (e.g. in SVD algorithm) double r = a/b; return Math.Abs(b)*Math.Sqrt(1 + (r*r)); } return 0d; } /// /// Numerically stable hypotenuse of a right angle triangle, i.e. (a,b) -> sqrt(a^2 + b^2) /// /// The length of side a of the triangle. /// The length of side b of the triangle. /// Returns sqrt(a2 + b2) without underflow/overflow. public static float Hypotenuse(float a, float b) { if (Math.Abs(a) > Math.Abs(b)) { float r = b/a; return Math.Abs(a)*(float)Math.Sqrt(1 + (r*r)); } if (b != 0.0) { // NOTE (ruegg): not "!b.AlmostZero()" to avoid convergence issues (e.g. in SVD algorithm) float r = a/b; return Math.Abs(b)*(float)Math.Sqrt(1 + (r*r)); } return 0f; } } }