//
// Math.NET Numerics, part of the Math.NET Project
// http://numerics.mathdotnet.com
// http://github.com/mathnet/mathnet-numerics
//
// Copyright (c) 2009-2010 Math.NET
//
// Permission is hereby granted, free of charge, to any person
// obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without
// restriction, including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following
// conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
//
using System;
using Complex = System.Numerics.Complex;
// ReSharper disable CheckNamespace
namespace IStation.Numerics
// ReSharper restore CheckNamespace
{
public partial class SpecialFunctions
{
///
/// Numerically stable exponential minus one, i.e. x -> exp(x)-1
///
/// A number specifying a power.
/// Returns exp(power)-1
.
public static double ExponentialMinusOne(double power)
{
double x = Math.Abs(power);
if (x > 0.1)
{
return Math.Exp(power) - 1.0;
}
if (x < x.PositiveEpsilonOf())
{
return x;
}
// Series Expansion to x^k / k!
int k = 0;
double term = 1.0;
return Evaluate.Series(
() =>
{
k++;
term *= power;
term /= k;
return term;
});
}
///
/// Numerically stable hypotenuse of a right angle triangle, i.e. (a,b) -> sqrt(a^2 + b^2)
///
/// The length of side a of the triangle.
/// The length of side b of the triangle.
/// Returns sqrt(a2 + b2)
without underflow/overflow.
public static Complex Hypotenuse(Complex a, Complex b)
{
if (a.Magnitude > b.Magnitude)
{
var r = b.Magnitude/a.Magnitude;
return a.Magnitude*Math.Sqrt(1 + (r*r));
}
if (b != 0.0)
{
// NOTE (ruegg): not "!b.AlmostZero()" to avoid convergence issues (e.g. in SVD algorithm)
var r = a.Magnitude/b.Magnitude;
return b.Magnitude*Math.Sqrt(1 + (r*r));
}
return 0d;
}
///
/// Numerically stable hypotenuse of a right angle triangle, i.e. (a,b) -> sqrt(a^2 + b^2)
///
/// The length of side a of the triangle.
/// The length of side b of the triangle.
/// Returns sqrt(a2 + b2)
without underflow/overflow.
public static Complex32 Hypotenuse(Complex32 a, Complex32 b)
{
if (a.Magnitude > b.Magnitude)
{
var r = b.Magnitude/a.Magnitude;
return a.Magnitude*(float)Math.Sqrt(1 + (r*r));
}
if (b != 0.0f)
{
// NOTE (ruegg): not "!b.AlmostZero()" to avoid convergence issues (e.g. in SVD algorithm)
var r = a.Magnitude/b.Magnitude;
return b.Magnitude*(float)Math.Sqrt(1 + (r*r));
}
return 0f;
}
///
/// Numerically stable hypotenuse of a right angle triangle, i.e. (a,b) -> sqrt(a^2 + b^2)
///
/// The length of side a of the triangle.
/// The length of side b of the triangle.
/// Returns sqrt(a2 + b2)
without underflow/overflow.
public static double Hypotenuse(double a, double b)
{
if (Math.Abs(a) > Math.Abs(b))
{
double r = b/a;
return Math.Abs(a)*Math.Sqrt(1 + (r*r));
}
if (b != 0.0)
{
// NOTE (ruegg): not "!b.AlmostZero()" to avoid convergence issues (e.g. in SVD algorithm)
double r = a/b;
return Math.Abs(b)*Math.Sqrt(1 + (r*r));
}
return 0d;
}
///
/// Numerically stable hypotenuse of a right angle triangle, i.e. (a,b) -> sqrt(a^2 + b^2)
///
/// The length of side a of the triangle.
/// The length of side b of the triangle.
/// Returns sqrt(a2 + b2)
without underflow/overflow.
public static float Hypotenuse(float a, float b)
{
if (Math.Abs(a) > Math.Abs(b))
{
float r = b/a;
return Math.Abs(a)*(float)Math.Sqrt(1 + (r*r));
}
if (b != 0.0)
{
// NOTE (ruegg): not "!b.AlmostZero()" to avoid convergence issues (e.g. in SVD algorithm)
float r = a/b;
return Math.Abs(b)*(float)Math.Sqrt(1 + (r*r));
}
return 0f;
}
}
}