//
// Math.NET Numerics, part of the Math.NET Project
// http://numerics.mathdotnet.com
// http://github.com/mathnet/mathnet-numerics
//
// Copyright (c) 2009-2018 Math.NET
//
// Permission is hereby granted, free of charge, to any person
// obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without
// restriction, including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following
// conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
//
using System;
using System.Collections.Generic;
using IStation.Numerics.Distributions;
using IStation.Numerics.Threading;
namespace IStation.Numerics.Statistics
{
///
/// Kernel density estimation (KDE).
///
public static class KernelDensity
{
///
/// Estimate the probability density function of a random variable.
///
///
/// The routine assumes that the provided kernel is well defined, i.e. a real non-negative function that integrates to 1.
///
public static double Estimate(double x, double bandwidth, IList samples, Func kernel)
{
if (bandwidth <= 0)
{
throw new ArgumentException("The bandwidth must be a positive number!");
}
var n = samples.Count;
var estimate = CommonParallel.Aggregate(0, n,
i => kernel((x - samples[i]) / bandwidth),
(a, b) => a + b,
0d) / (n * bandwidth);
return estimate;
}
///
/// Estimate the probability density function of a random variable with a Gaussian kernel.
///
public static double EstimateGaussian(double x, double bandwidth, IList samples)
{
return Estimate(x, bandwidth, samples, GaussianKernel);
}
///
/// Estimate the probability density function of a random variable with an Epanechnikov kernel.
/// The Epanechnikov kernel is optimal in a mean square error sense.
///
public static double EstimateEpanechnikov(double x, double bandwidth, IList samples)
{
return Estimate(x, bandwidth, samples, EpanechnikovKernel);
}
///
/// Estimate the probability density function of a random variable with a uniform kernel.
///
public static double EstimateUniform(double x, double bandwidth, IList samples)
{
return Estimate(x, bandwidth, samples, UniformKernel);
}
///
/// Estimate the probability density function of a random variable with a triangular kernel.
///
public static double EstimateTriangular(double x, double bandwidth, IList samples)
{
return Estimate(x, bandwidth, samples, TriangularKernel);
}
///
/// A Gaussian kernel (PDF of Normal distribution with mean 0 and variance 1).
/// This kernel is the default.
///
public static double GaussianKernel(double x)
{
return Normal.PDF(0.0, 1.0, x);
}
///
/// Epanechnikov Kernel:
/// x => Math.Abs(x) <= 1.0 ? 3.0/4.0(1.0-x^2) : 0.0
///
public static double EpanechnikovKernel(double x)
{
return Math.Abs(x) <= 1.0 ? 0.75 * (1 - x * x) : 0.0;
}
///
/// Uniform Kernel:
/// x => Math.Abs(x) <= 1.0 ? 1.0/2.0 : 0.0
///
public static double UniformKernel(double x)
{
return ContinuousUniform.PDF(-1.0, 1.0, x);
}
///
/// Triangular Kernel:
/// x => Math.Abs(x) <= 1.0 ? (1.0-Math.Abs(x)) : 0.0
///
public static double TriangularKernel(double x)
{
return Triangular.PDF(-1.0, 1.0, 0.0, x);
}
}
}