// // Math.NET Numerics, part of the Math.NET Project // http://numerics.mathdotnet.com // http://github.com/mathnet/mathnet-numerics // // Copyright (c) 2009-2018 Math.NET // // Permission is hereby granted, free of charge, to any person // obtaining a copy of this software and associated documentation // files (the "Software"), to deal in the Software without // restriction, including without limitation the rights to use, // copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the // Software is furnished to do so, subject to the following // conditions: // // The above copyright notice and this permission notice shall be // included in all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES // OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT // HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, // WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR // OTHER DEALINGS IN THE SOFTWARE. // using System; using System.Collections.Generic; using IStation.Numerics.Distributions; using IStation.Numerics.Threading; namespace IStation.Numerics.Statistics { /// /// Kernel density estimation (KDE). /// public static class KernelDensity { /// /// Estimate the probability density function of a random variable. /// /// /// The routine assumes that the provided kernel is well defined, i.e. a real non-negative function that integrates to 1. /// public static double Estimate(double x, double bandwidth, IList samples, Func kernel) { if (bandwidth <= 0) { throw new ArgumentException("The bandwidth must be a positive number!"); } var n = samples.Count; var estimate = CommonParallel.Aggregate(0, n, i => kernel((x - samples[i]) / bandwidth), (a, b) => a + b, 0d) / (n * bandwidth); return estimate; } /// /// Estimate the probability density function of a random variable with a Gaussian kernel. /// public static double EstimateGaussian(double x, double bandwidth, IList samples) { return Estimate(x, bandwidth, samples, GaussianKernel); } /// /// Estimate the probability density function of a random variable with an Epanechnikov kernel. /// The Epanechnikov kernel is optimal in a mean square error sense. /// public static double EstimateEpanechnikov(double x, double bandwidth, IList samples) { return Estimate(x, bandwidth, samples, EpanechnikovKernel); } /// /// Estimate the probability density function of a random variable with a uniform kernel. /// public static double EstimateUniform(double x, double bandwidth, IList samples) { return Estimate(x, bandwidth, samples, UniformKernel); } /// /// Estimate the probability density function of a random variable with a triangular kernel. /// public static double EstimateTriangular(double x, double bandwidth, IList samples) { return Estimate(x, bandwidth, samples, TriangularKernel); } /// /// A Gaussian kernel (PDF of Normal distribution with mean 0 and variance 1). /// This kernel is the default. /// public static double GaussianKernel(double x) { return Normal.PDF(0.0, 1.0, x); } /// /// Epanechnikov Kernel: /// x => Math.Abs(x) <= 1.0 ? 3.0/4.0(1.0-x^2) : 0.0 /// public static double EpanechnikovKernel(double x) { return Math.Abs(x) <= 1.0 ? 0.75 * (1 - x * x) : 0.0; } /// /// Uniform Kernel: /// x => Math.Abs(x) <= 1.0 ? 1.0/2.0 : 0.0 /// public static double UniformKernel(double x) { return ContinuousUniform.PDF(-1.0, 1.0, x); } /// /// Triangular Kernel: /// x => Math.Abs(x) <= 1.0 ? (1.0-Math.Abs(x)) : 0.0 /// public static double TriangularKernel(double x) { return Triangular.PDF(-1.0, 1.0, 0.0, x); } } }