// // Math.NET Numerics, part of the Math.NET Project // http://numerics.mathdotnet.com // http://github.com/mathnet/mathnet-numerics // // Copyright (c) 2009-2013 Math.NET // // Permission is hereby granted, free of charge, to any person // obtaining a copy of this software and associated documentation // files (the "Software"), to deal in the Software without // restriction, including without limitation the rights to use, // copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the // Software is furnished to do so, subject to the following // conditions: // // The above copyright notice and this permission notice shall be // included in all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES // OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT // HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, // WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR // OTHER DEALINGS IN THE SOFTWARE. // using System; using System.Collections.Generic; using System.Linq; using IStation.Numerics.Random; using IStation.Numerics.Statistics; using IStation.Numerics.Threading; namespace IStation.Numerics.Distributions { /// /// Continuous Univariate Log-Normal distribution. /// For details about this distribution, see /// Wikipedia - Log-Normal distribution. /// public class LogNormal : IContinuousDistribution { System.Random _random; readonly double _mu; readonly double _sigma; /// /// Initializes a new instance of the class. /// The distribution will be initialized with the default /// random number generator. /// /// The log-scale (μ) of the logarithm of the distribution. /// The shape (σ) of the logarithm of the distribution. Range: σ ≥ 0. public LogNormal(double mu, double sigma) { if (!IsValidParameterSet(mu, sigma)) { throw new ArgumentException("Invalid parametrization for the distribution."); } _random = SystemRandomSource.Default; _mu = mu; _sigma = sigma; } /// /// Initializes a new instance of the class. /// The distribution will be initialized with the default /// random number generator. /// /// The log-scale (μ) of the distribution. /// The shape (σ) of the distribution. Range: σ ≥ 0. /// The random number generator which is used to draw random samples. public LogNormal(double mu, double sigma, System.Random randomSource) { if (!IsValidParameterSet(mu, sigma)) { throw new ArgumentException("Invalid parametrization for the distribution."); } _random = randomSource ?? SystemRandomSource.Default; _mu = mu; _sigma = sigma; } /// /// Constructs a log-normal distribution with the desired mu and sigma parameters. /// /// The log-scale (μ) of the distribution. /// The shape (σ) of the distribution. Range: σ ≥ 0. /// The random number generator which is used to draw random samples. Optional, can be null. /// A log-normal distribution. public static LogNormal WithMuSigma(double mu, double sigma, System.Random randomSource = null) { return new LogNormal(mu, sigma, randomSource); } /// /// Constructs a log-normal distribution with the desired mean and variance. /// /// The mean of the log-normal distribution. /// The variance of the log-normal distribution. /// The random number generator which is used to draw random samples. Optional, can be null. /// A log-normal distribution. public static LogNormal WithMeanVariance(double mean, double var, System.Random randomSource = null) { var sigma2 = Math.Log(var/(mean*mean) + 1.0); return new LogNormal(Math.Log(mean) - sigma2/2.0, Math.Sqrt(sigma2), randomSource); } /// /// Estimates the log-normal distribution parameters from sample data with maximum-likelihood. /// /// The samples to estimate the distribution parameters from. /// The random number generator which is used to draw random samples. Optional, can be null. /// A log-normal distribution. /// MATLAB: lognfit public static LogNormal Estimate(IEnumerable samples, System.Random randomSource = null) { var muSigma = samples.Select(s => Math.Log(s)).MeanStandardDeviation(); return new LogNormal(muSigma.Item1, muSigma.Item2, randomSource); } /// /// A string representation of the distribution. /// /// a string representation of the distribution. public override string ToString() { return $"LogNormal(μ = {_mu}, σ = {_sigma})"; } /// /// Tests whether the provided values are valid parameters for this distribution. /// /// The log-scale (μ) of the distribution. /// The shape (σ) of the distribution. Range: σ ≥ 0. public static bool IsValidParameterSet(double mu, double sigma) { return sigma >= 0.0 && !double.IsNaN(mu); } /// /// Gets the log-scale (μ) (mean of the logarithm) of the distribution. /// public double Mu => _mu; /// /// Gets the shape (σ) (standard deviation of the logarithm) of the distribution. Range: σ ≥ 0. /// public double Sigma => _sigma; /// /// Gets or sets the random number generator which is used to draw random samples. /// public System.Random RandomSource { get => _random; set => _random = value ?? SystemRandomSource.Default; } /// /// Gets the mu of the log-normal distribution. /// public double Mean => Math.Exp(_mu + (_sigma*_sigma/2.0)); /// /// Gets the variance of the log-normal distribution. /// public double Variance { get { var sigma2 = _sigma*_sigma; return (Math.Exp(sigma2) - 1.0)*Math.Exp(_mu + _mu + sigma2); } } /// /// Gets the standard deviation of the log-normal distribution. /// public double StdDev { get { var sigma2 = _sigma*_sigma; return Math.Sqrt((Math.Exp(sigma2) - 1.0)*Math.Exp(_mu + _mu + sigma2)); } } /// /// Gets the entropy of the log-normal distribution. /// public double Entropy => 0.5 + Math.Log(_sigma) + _mu + Constants.LogSqrt2Pi; /// /// Gets the skewness of the log-normal distribution. /// public double Skewness { get { var expsigma2 = Math.Exp(_sigma*_sigma); return (expsigma2 + 2.0)*Math.Sqrt(expsigma2 - 1); } } /// /// Gets the mode of the log-normal distribution. /// public double Mode => Math.Exp(_mu - (_sigma*_sigma)); /// /// Gets the median of the log-normal distribution. /// public double Median => Math.Exp(_mu); /// /// Gets the minimum of the log-normal distribution. /// public double Minimum => 0.0; /// /// Gets the maximum of the log-normal distribution. /// public double Maximum => double.PositiveInfinity; /// /// Computes the probability density of the distribution (PDF) at x, i.e. ∂P(X ≤ x)/∂x. /// /// The location at which to compute the density. /// the density at . /// public double Density(double x) { if (x < 0.0) { return 0.0; } var a = (Math.Log(x) - _mu)/_sigma; return Math.Exp(-0.5*a*a)/(x*_sigma*Constants.Sqrt2Pi); } /// /// Computes the log probability density of the distribution (lnPDF) at x, i.e. ln(∂P(X ≤ x)/∂x). /// /// The location at which to compute the log density. /// the log density at . /// public double DensityLn(double x) { if (x < 0.0) { return double.NegativeInfinity; } var a = (Math.Log(x) - _mu)/_sigma; return (-0.5*a*a) - Math.Log(x*_sigma) - Constants.LogSqrt2Pi; } /// /// Computes the cumulative distribution (CDF) of the distribution at x, i.e. P(X ≤ x). /// /// The location at which to compute the cumulative distribution function. /// the cumulative distribution at location . /// public double CumulativeDistribution(double x) { return x < 0.0 ? 0.0 : 0.5*SpecialFunctions.Erfc((_mu - Math.Log(x))/(_sigma*Constants.Sqrt2)); } /// /// Computes the inverse of the cumulative distribution function (InvCDF) for the distribution /// at the given probability. This is also known as the quantile or percent point function. /// /// The location at which to compute the inverse cumulative density. /// the inverse cumulative density at . /// public double InverseCumulativeDistribution(double p) { return p <= 0.0 ? 0.0 : p >= 1.0 ? double.PositiveInfinity : Math.Exp(_mu - _sigma*Constants.Sqrt2*SpecialFunctions.ErfcInv(2.0*p)); } /// /// Generates a sample from the log-normal distribution using the Box-Muller algorithm. /// /// a sample from the distribution. public double Sample() { return SampleUnchecked(_random, _mu, _sigma); } /// /// Fills an array with samples generated from the distribution. /// public void Samples(double[] values) { SamplesUnchecked(_random, values, _mu, _sigma); } /// /// Generates a sequence of samples from the log-normal distribution using the Box-Muller algorithm. /// /// a sequence of samples from the distribution. public IEnumerable Samples() { return SamplesUnchecked(_random, _mu, _sigma); } static double SampleUnchecked(System.Random rnd, double mu, double sigma) { return Math.Exp(Normal.SampleUnchecked(rnd, mu, sigma)); } static IEnumerable SamplesUnchecked(System.Random rnd, double mu, double sigma) { return Normal.SamplesUnchecked(rnd, mu, sigma).Select(Math.Exp); } static void SamplesUnchecked(System.Random rnd, double[] values, double mu, double sigma) { Normal.SamplesUnchecked(rnd, values, mu, sigma); CommonParallel.For(0, values.Length, 4096, (a, b) => { for (int i = a; i < b; i++) { values[i] = Math.Exp(values[i]); } }); } /// /// Computes the probability density of the distribution (PDF) at x, i.e. ∂P(X ≤ x)/∂x. /// /// The location at which to compute the density. /// The log-scale (μ) of the distribution. /// The shape (σ) of the distribution. Range: σ ≥ 0. /// the density at . /// /// MATLAB: lognpdf public static double PDF(double mu, double sigma, double x) { if (sigma < 0.0) { throw new ArgumentException("Invalid parametrization for the distribution."); } if (x < 0.0) { return 0.0; } var a = (Math.Log(x) - mu)/sigma; return Math.Exp(-0.5*a*a)/(x*sigma*Constants.Sqrt2Pi); } /// /// Computes the log probability density of the distribution (lnPDF) at x, i.e. ln(∂P(X ≤ x)/∂x). /// /// The location at which to compute the density. /// The log-scale (μ) of the distribution. /// The shape (σ) of the distribution. Range: σ ≥ 0. /// the log density at . /// public static double PDFLn(double mu, double sigma, double x) { if (sigma < 0.0) { throw new ArgumentException("Invalid parametrization for the distribution."); } if (x < 0.0) { return double.NegativeInfinity; } var a = (Math.Log(x) - mu)/sigma; return (-0.5*a*a) - Math.Log(x*sigma) - Constants.LogSqrt2Pi; } /// /// Computes the cumulative distribution (CDF) of the distribution at x, i.e. P(X ≤ x). /// /// The location at which to compute the cumulative distribution function. /// The log-scale (μ) of the distribution. /// The shape (σ) of the distribution. Range: σ ≥ 0. /// the cumulative distribution at location . /// /// MATLAB: logncdf public static double CDF(double mu, double sigma, double x) { if (sigma < 0.0) { throw new ArgumentException("Invalid parametrization for the distribution."); } return x < 0.0 ? 0.0 : 0.5*(1.0 + SpecialFunctions.Erf((Math.Log(x) - mu)/(sigma*Constants.Sqrt2))); } /// /// Computes the inverse of the cumulative distribution function (InvCDF) for the distribution /// at the given probability. This is also known as the quantile or percent point function. /// /// The location at which to compute the inverse cumulative density. /// The log-scale (μ) of the distribution. /// The shape (σ) of the distribution. Range: σ ≥ 0. /// the inverse cumulative density at . /// /// MATLAB: logninv public static double InvCDF(double mu, double sigma, double p) { if (sigma < 0.0) { throw new ArgumentException("Invalid parametrization for the distribution."); } return p <= 0.0 ? 0.0 : p >= 1.0 ? double.PositiveInfinity : Math.Exp(mu - sigma*Constants.Sqrt2*SpecialFunctions.ErfcInv(2.0*p)); } /// /// Generates a sample from the log-normal distribution using the Box-Muller algorithm. /// /// The random number generator to use. /// The log-scale (μ) of the distribution. /// The shape (σ) of the distribution. Range: σ ≥ 0. /// a sample from the distribution. public static double Sample(System.Random rnd, double mu, double sigma) { if (sigma < 0.0) { throw new ArgumentException("Invalid parametrization for the distribution."); } return SampleUnchecked(rnd, mu, sigma); } /// /// Generates a sequence of samples from the log-normal distribution using the Box-Muller algorithm. /// /// The random number generator to use. /// The log-scale (μ) of the distribution. /// The shape (σ) of the distribution. Range: σ ≥ 0. /// a sequence of samples from the distribution. public static IEnumerable Samples(System.Random rnd, double mu, double sigma) { if (sigma < 0.0) { throw new ArgumentException("Invalid parametrization for the distribution."); } return SamplesUnchecked(rnd, mu, sigma); } /// /// Fills an array with samples generated from the distribution. /// /// The random number generator to use. /// The array to fill with the samples. /// The log-scale (μ) of the distribution. /// The shape (σ) of the distribution. Range: σ ≥ 0. /// a sequence of samples from the distribution. public static void Samples(System.Random rnd, double[] values, double mu, double sigma) { if (sigma < 0.0) { throw new ArgumentException("Invalid parametrization for the distribution."); } SamplesUnchecked(rnd, values, mu, sigma); } /// /// Generates a sample from the log-normal distribution using the Box-Muller algorithm. /// /// The log-scale (μ) of the distribution. /// The shape (σ) of the distribution. Range: σ ≥ 0. /// a sample from the distribution. public static double Sample(double mu, double sigma) { if (sigma < 0.0) { throw new ArgumentException("Invalid parametrization for the distribution."); } return SampleUnchecked(SystemRandomSource.Default, mu, sigma); } /// /// Generates a sequence of samples from the log-normal distribution using the Box-Muller algorithm. /// /// The log-scale (μ) of the distribution. /// The shape (σ) of the distribution. Range: σ ≥ 0. /// a sequence of samples from the distribution. public static IEnumerable Samples(double mu, double sigma) { if (sigma < 0.0) { throw new ArgumentException("Invalid parametrization for the distribution."); } return SamplesUnchecked(SystemRandomSource.Default, mu, sigma); } /// /// Fills an array with samples generated from the distribution. /// /// The array to fill with the samples. /// The log-scale (μ) of the distribution. /// The shape (σ) of the distribution. Range: σ ≥ 0. /// a sequence of samples from the distribution. public static void Samples(double[] values, double mu, double sigma) { if (sigma < 0.0) { throw new ArgumentException("Invalid parametrization for the distribution."); } SamplesUnchecked(SystemRandomSource.Default, values, mu, sigma); } } }