using System; using System.Numerics; namespace IStation.Numerics { /// /// This partial implementation of the SpecialFunctions class contains all methods related to the modified Bessel function. /// public static partial class SpecialFunctions { /// /// Returns the Kelvin function of the first kind. /// KelvinBe(nu, x) is given by BesselJ(0, j * sqrt(j) * x) where j = sqrt(-1). /// KelvinBer(nu, x) and KelvinBei(nu, x) are the real and imaginary parts of the KelvinBe(nu, x) /// /// the order of the the Kelvin function. /// The value to compute the Kelvin function of. /// The Kelvin function of the first kind. public static Complex KelvinBe(double nu, double x) { Complex ISqrtI = new Complex(-Constants.Sqrt1Over2, Constants.Sqrt1Over2); // j * sqrt(j) = (-1)^(3/4) = (-1 + j)/sqrt(2) return BesselJ(nu, ISqrtI * x); } /// /// Returns the Kelvin function ber. /// KelvinBer(nu, x) is given by the real part of BesselJ(nu, j * sqrt(j) * x) where j = sqrt(-1). /// /// the order of the the Kelvin function. /// The value to compute the Kelvin function of. /// The Kelvin function ber. public static double KelvinBer(double nu, double x) { return KelvinBe(nu, x).Real; } /// /// Returns the Kelvin function ber. /// KelvinBer(x) is given by the real part of BesselJ(0, j * sqrt(j) * x) where j = sqrt(-1). /// KelvinBer(x) is equivalent to KelvinBer(0, x). /// /// The value to compute the Kelvin function of. /// The Kelvin function ber. public static double KelvinBer(double x) { return KelvinBe(0, x).Real; } /// /// Returns the Kelvin function bei. /// KelvinBei(nu, x) is given by the imaginary part of BesselJ(nu, j * sqrt(j) * x) where j = sqrt(-1). /// /// the order of the the Kelvin function. /// The value to compute the Kelvin function of. /// The Kelvin function bei. public static double KelvinBei(double nu, double x) { return KelvinBe(nu, x).Imaginary; } /// /// Returns the Kelvin function bei. /// KelvinBei(x) is given by the imaginary part of BesselJ(0, j * sqrt(j) * x) where j = sqrt(-1). /// KelvinBei(x) is equivalent to KelvinBei(0, x). /// /// The value to compute the Kelvin function of. /// The Kelvin function bei. public static double KelvinBei(double x) { return KelvinBe(0, x).Imaginary; } /// /// Returns the derivative of the Kelvin function ber. /// /// The order of the Kelvin function. /// The value to compute the derivative of the Kelvin function of. /// the derivative of the Kelvin function ber public static double KelvinBerPrime(double nu, double x) { const double inv2Sqrt2 = 0.35355339059327376220042218105242451964241796884424; // 1/(2 * sqrt(2)) return inv2Sqrt2 * (-KelvinBer(nu - 1, x) + KelvinBer(nu + 1, x) - KelvinBei(nu - 1, x) + KelvinBei(nu + 1, x)); } /// /// Returns the derivative of the Kelvin function ber. /// /// The value to compute the derivative of the Kelvin function of. /// The derivative of the Kelvin function ber. public static double KelvinBerPrime(double x) { return KelvinBerPrime(0, x); } /// /// Returns the derivative of the Kelvin function bei. /// /// The order of the Kelvin function. /// The value to compute the derivative of the Kelvin function of. /// the derivative of the Kelvin function bei. public static double KelvinBeiPrime(double nu, double x) { const double inv2Sqrt2 = 0.35355339059327376220042218105242451964241796884424; // 1/(2 * sqrt(2)) return inv2Sqrt2 * (KelvinBer(nu - 1, x) - KelvinBer(nu + 1, x) - KelvinBei(nu - 1, x) + KelvinBei(nu + 1, x)); } /// /// Returns the derivative of the Kelvin function bei. /// /// The value to compute the derivative of the Kelvin function of. /// The derivative of the Kelvin function bei. public static double KelvinBeiPrime(double x) { return KelvinBeiPrime(0, x); } /// /// Returns the Kelvin function of the second kind /// KelvinKe(nu, x) is given by Exp(-nu * pi * j / 2) * BesselK(nu, x * sqrt(j)) where j = sqrt(-1). /// KelvinKer(nu, x) and KelvinKei(nu, x) are the real and imaginary parts of the KelvinBe(nu, x) /// /// The order of the Kelvin function. /// The value to calculate the kelvin function of, /// public static Complex KelvinKe(double nu, double x) { Complex PiIOver2 = new Complex(0.0, Constants.PiOver2); // pi * I / 2 Complex SqrtI = new Complex(Constants.Sqrt1Over2, Constants.Sqrt1Over2); // sqrt(j) = (-1)^(1/4) = (1 + j)/sqrt(2) return Complex.Exp(-nu * PiIOver2) * BesselK(nu, SqrtI * x); } /// /// Returns the Kelvin function ker. /// KelvinKer(nu, x) is given by the real part of Exp(-nu * pi * j / 2) * BesselK(nu, sqrt(j) * x) where j = sqrt(-1). /// /// the order of the the Kelvin function. /// The non-negative real value to compute the Kelvin function of. /// The Kelvin function ker. public static double KelvinKer(double nu, double x) { if (x <= 0.0) { throw new ArithmeticException(); } return KelvinKe(nu, x).Real; } /// /// Returns the Kelvin function ker. /// KelvinKer(x) is given by the real part of Exp(-nu * pi * j / 2) * BesselK(0, sqrt(j) * x) where j = sqrt(-1). /// KelvinKer(x) is equivalent to KelvinKer(0, x). /// /// The non-negative real value to compute the Kelvin function of. /// The Kelvin function ker. public static double KelvinKer(double x) { if (x <= 0.0) { throw new ArithmeticException(); } return KelvinKe(0, x).Real; } /// /// Returns the Kelvin function kei. /// KelvinKei(nu, x) is given by the imaginary part of Exp(-nu * pi * j / 2) * BesselK(nu, sqrt(j) * x) where j = sqrt(-1). /// /// the order of the the Kelvin function. /// The non-negative real value to compute the Kelvin function of. /// The Kelvin function kei. public static double KelvinKei(double nu, double x) { if (x <= 0.0) { throw new ArithmeticException(); } return KelvinKe(nu, x).Imaginary; } /// /// Returns the Kelvin function kei. /// KelvinKei(x) is given by the imaginary part of Exp(-nu * pi * j / 2) * BesselK(0, sqrt(j) * x) where j = sqrt(-1). /// KelvinKei(x) is equivalent to KelvinKei(0, x). /// /// The non-negative real value to compute the Kelvin function of. /// The Kelvin function kei. public static double KelvinKei(double x) { if (x <= 0.0) { throw new ArithmeticException(); } return KelvinKe(0, x).Imaginary; } /// /// Returns the derivative of the Kelvin function ker. /// /// The order of the Kelvin function. /// The non-negative real value to compute the derivative of the Kelvin function of. /// The derivative of the Kelvin function ker. public static double KelvinKerPrime(double nu, double x) { if (x <= 0.0) { throw new ArithmeticException(); } const double inv2Sqrt2 = 0.35355339059327376220042218105242451964241796884424; // 1/(2 * sqrt(2)) return inv2Sqrt2 * (-KelvinKer(nu - 1, x) + KelvinKer(nu + 1, x) - KelvinKei(nu - 1, x) + KelvinKei(nu + 1, x)); } /// /// Returns the derivative of the Kelvin function ker. /// /// The value to compute the derivative of the Kelvin function of. /// The derivative of the Kelvin function ker. public static double KelvinKerPrime(double x) { if (x <= 0.0) { throw new ArithmeticException(); } return KelvinKerPrime(0, x); } /// /// Returns the derivative of the Kelvin function kei. /// /// The order of the Kelvin function. /// The value to compute the derivative of the Kelvin function of. /// The derivative of the Kelvin function kei. public static double KelvinKeiPrime(double nu, double x) { if (x <= 0.0) { throw new ArithmeticException(); } const double inv2Sqrt2 = 0.35355339059327376220042218105242451964241796884424; // 1/(2 * sqrt(2)) return inv2Sqrt2 * (KelvinKer(nu - 1, x) - KelvinKer(nu + 1, x) - KelvinKei(nu - 1, x) + KelvinKei(nu + 1, x)); } /// /// Returns the derivative of the Kelvin function kei. /// /// The value to compute the derivative of the Kelvin function of. /// The derivative of the Kelvin function kei. public static double KelvinKeiPrime(double x) { if (x <= 0.0) { throw new ArithmeticException(); } return KelvinKeiPrime(0, x); } } }