// // Math.NET Numerics, part of the Math.NET Project // http://numerics.mathdotnet.com // http://github.com/mathnet/mathnet-numerics // // Copyright (c) 2009-2015 Math.NET // // Permission is hereby granted, free of charge, to any person // obtaining a copy of this software and associated documentation // files (the "Software"), to deal in the Software without // restriction, including without limitation the rights to use, // copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the // Software is furnished to do so, subject to the following // conditions: // // The above copyright notice and this permission notice shall be // included in all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES // OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT // HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, // WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR // OTHER DEALINGS IN THE SOFTWARE. // using System; using System.Collections.Generic; using IStation.Numerics.Random; using IStation.Numerics.RootFinding; using IStation.Numerics.Threading; namespace IStation.Numerics.Distributions { /// /// Continuous Univariate Beta distribution. /// For details about this distribution, see /// Wikipedia - Beta distribution. /// /// /// There are a few special cases for the parameterization of the Beta distribution. When both /// shape parameters are positive infinity, the Beta distribution degenerates to a point distribution /// at 0.5. When one of the shape parameters is positive infinity, the distribution degenerates to a point /// distribution at the positive infinity. When both shape parameters are 0.0, the Beta distribution /// degenerates to a Bernoulli distribution with parameter 0.5. When one shape parameter is 0.0, the /// distribution degenerates to a point distribution at the non-zero shape parameter. /// public class Beta : IContinuousDistribution { System.Random _random; readonly double _shapeA; readonly double _shapeB; /// /// Initializes a new instance of the Beta class. /// /// The α shape parameter of the Beta distribution. Range: α ≥ 0. /// The β shape parameter of the Beta distribution. Range: β ≥ 0. public Beta(double a, double b) { if (!IsValidParameterSet(a, b)) { throw new ArgumentException("Invalid parametrization for the distribution."); } _random = SystemRandomSource.Default; _shapeA = a; _shapeB = b; } /// /// Initializes a new instance of the Beta class. /// /// The α shape parameter of the Beta distribution. Range: α ≥ 0. /// The β shape parameter of the Beta distribution. Range: β ≥ 0. /// The random number generator which is used to draw random samples. public Beta(double a, double b, System.Random randomSource) { if (!IsValidParameterSet(a, b)) { throw new ArgumentException("Invalid parametrization for the distribution."); } _random = randomSource ?? SystemRandomSource.Default; _shapeA = a; _shapeB = b; } /// /// A string representation of the distribution. /// /// A string representation of the Beta distribution. public override string ToString() { return $"Beta(α = {_shapeA}, β = {_shapeB})"; } /// /// Tests whether the provided values are valid parameters for this distribution. /// /// The α shape parameter of the Beta distribution. Range: α ≥ 0. /// The β shape parameter of the Beta distribution. Range: β ≥ 0. public static bool IsValidParameterSet(double a, double b) { return a >= 0.0 && b >= 0.0; } /// /// Gets the α shape parameter of the Beta distribution. Range: α ≥ 0. /// public double A => _shapeA; /// /// Gets the β shape parameter of the Beta distribution. Range: β ≥ 0. /// public double B => _shapeB; /// /// Gets or sets the random number generator which is used to draw random samples. /// public System.Random RandomSource { get => _random; set => _random = value ?? SystemRandomSource.Default; } /// /// Gets the mean of the Beta distribution. /// public double Mean { get { if (_shapeA == 0.0 && _shapeB == 0.0) { return 0.5; } if (_shapeA == 0.0) { return 0.0; } if (_shapeB == 0.0) { return 1.0; } if (double.IsPositiveInfinity(_shapeA) && double.IsPositiveInfinity(_shapeB)) { return 0.5; } if (double.IsPositiveInfinity(_shapeA)) { return 1.0; } if (double.IsPositiveInfinity(_shapeB)) { return 0.0; } return _shapeA/(_shapeA + _shapeB); } } /// /// Gets the variance of the Beta distribution. /// public double Variance => (_shapeA*_shapeB)/((_shapeA + _shapeB)*(_shapeA + _shapeB)*(_shapeA + _shapeB + 1.0)); /// /// Gets the standard deviation of the Beta distribution. /// public double StdDev => Math.Sqrt((_shapeA*_shapeB)/((_shapeA + _shapeB)*(_shapeA + _shapeB)*(_shapeA + _shapeB + 1.0))); /// /// Gets the entropy of the Beta distribution. /// public double Entropy { get { if (double.IsPositiveInfinity(_shapeA) || double.IsPositiveInfinity(_shapeB)) { return 0.0; } if (_shapeA == 0.0 && _shapeB == 0.0) { return -Math.Log(0.5); } if (_shapeA == 0.0 || _shapeB == 0.0) { return 0.0; } return SpecialFunctions.BetaLn(_shapeA, _shapeB) - ((_shapeA - 1.0)*SpecialFunctions.DiGamma(_shapeA)) - ((_shapeB - 1.0)*SpecialFunctions.DiGamma(_shapeB)) + ((_shapeA + _shapeB - 2.0)*SpecialFunctions.DiGamma(_shapeA + _shapeB)); } } /// /// Gets the skewness of the Beta distribution. /// public double Skewness { get { if (double.IsPositiveInfinity(_shapeA) && double.IsPositiveInfinity(_shapeB)) { return 0.0; } if (double.IsPositiveInfinity(_shapeA)) { return -2.0; } if (double.IsPositiveInfinity(_shapeB)) { return 2.0; } if (_shapeA == 0.0 && _shapeB == 0.0) { return 0.0; } if (_shapeA == 0.0) { return 2.0; } if (_shapeB == 0.0) { return -2.0; } return 2.0*(_shapeB - _shapeA)*Math.Sqrt(_shapeA + _shapeB + 1.0) /((_shapeA + _shapeB + 2.0)*Math.Sqrt(_shapeA*_shapeB)); } } /// /// Gets the mode of the Beta distribution; when there are multiple answers, this routine will return 0.5. /// public double Mode { get { if (_shapeA == 0.0 && _shapeB == 0.0) { return 0.5; } if (_shapeA == 0.0) { return 0.0; } if (_shapeB == 0.0) { return 1.0; } if (double.IsPositiveInfinity(_shapeA) && double.IsPositiveInfinity(_shapeB)) { return 0.5; } if (double.IsPositiveInfinity(_shapeA)) { return 1.0; } if (double.IsPositiveInfinity(_shapeB)) { return 0.0; } if (_shapeA == 1.0 && _shapeB == 1.0) { return 0.5; } return (_shapeA - 1)/(_shapeA + _shapeB - 2); } } /// /// Gets the median of the Beta distribution. /// public double Median => throw new NotSupportedException(); /// /// Gets the minimum of the Beta distribution. /// public double Minimum => 0.0; /// /// Gets the maximum of the Beta distribution. /// public double Maximum => 1.0; /// /// Computes the probability density of the distribution (PDF) at x, i.e. ∂P(X ≤ x)/∂x. /// /// The location at which to compute the density. /// the density at . /// public double Density(double x) { return PDF(_shapeA, _shapeB, x); } /// /// Computes the log probability density of the distribution (lnPDF) at x, i.e. ln(∂P(X ≤ x)/∂x). /// /// The location at which to compute the log density. /// the log density at . /// public double DensityLn(double x) { return PDFLn(_shapeA, _shapeB, x); } /// /// Computes the cumulative distribution (CDF) of the distribution at x, i.e. P(X ≤ x). /// /// The location at which to compute the cumulative distribution function. /// the cumulative distribution at location . /// public double CumulativeDistribution(double x) { return CDF(_shapeA, _shapeB, x); } /// /// Computes the inverse of the cumulative distribution function (InvCDF) for the distribution /// at the given probability. This is also known as the quantile or percent point function. /// /// The location at which to compute the inverse cumulative density. /// the inverse cumulative density at . /// /// WARNING: currently not an explicit implementation, hence slow and unreliable. public double InverseCumulativeDistribution(double p) { return InvCDF(_shapeA, _shapeB, p); } /// /// Generates a sample from the Beta distribution. /// /// a sample from the distribution. public double Sample() { return SampleUnchecked(_random, _shapeA, _shapeB); } /// /// Fills an array with samples generated from the distribution. /// public void Samples(double[] values) { SamplesUnchecked(_random, values, _shapeA, _shapeB); } /// /// Generates a sequence of samples from the Beta distribution. /// /// a sequence of samples from the distribution. public IEnumerable Samples() { return SamplesUnchecked(_random, _shapeA, _shapeB); } /// /// Samples Beta distributed random variables by sampling two Gamma variables and normalizing. /// /// The random number generator to use. /// The α shape parameter of the Beta distribution. Range: α ≥ 0. /// The β shape parameter of the Beta distribution. Range: β ≥ 0. /// a random number from the Beta distribution. internal static double SampleUnchecked(System.Random rnd, double a, double b) { var x = Gamma.SampleUnchecked(rnd, a, 1.0); var y = Gamma.SampleUnchecked(rnd, b, 1.0); return x/(x + y); } internal static void SamplesUnchecked(System.Random rnd, double[] values, double a, double b) { var y = new double[values.Length]; Gamma.SamplesUnchecked(rnd, values, a, 1.0); Gamma.SamplesUnchecked(rnd, y, b, 1.0); CommonParallel.For(0, values.Length, 4096, (aa, bb) => { for (int i = aa; i < bb; i++) { values[i] = values[i]/(values[i] + y[i]); } }); } static IEnumerable SamplesUnchecked(System.Random rnd, double a, double b) { while (true) { yield return SampleUnchecked(rnd, a, b); } } /// /// Computes the probability density of the distribution (PDF) at x, i.e. ∂P(X ≤ x)/∂x. /// /// The α shape parameter of the Beta distribution. Range: α ≥ 0. /// The β shape parameter of the Beta distribution. Range: β ≥ 0. /// The location at which to compute the density. /// the density at . /// public static double PDF(double a, double b, double x) { if (a < 0.0 || b < 0.0) { throw new ArgumentException("Invalid parametrization for the distribution."); } if (x < 0.0 || x > 1.0) { return 0.0; } if (double.IsPositiveInfinity(a) && double.IsPositiveInfinity(b)) { return x == 0.5 ? double.PositiveInfinity : 0.0; } if (double.IsPositiveInfinity(a)) { return x == 1.0 ? double.PositiveInfinity : 0.0; } if (double.IsPositiveInfinity(b)) { return x == 0.0 ? double.PositiveInfinity : 0.0; } if (a == 0.0 && b == 0.0) { if (x == 0.0 || x == 1.0) { return double.PositiveInfinity; } return 0.0; } if (a == 0.0) { return x == 0.0 ? double.PositiveInfinity : 0.0; } if (b == 0.0) { return x == 1.0 ? double.PositiveInfinity : 0.0; } if (a == 1.0 && b == 1.0) { return 1.0; } if (a > 80.0 || b > 80.0) { return Math.Exp(PDFLn(a, b, x)); } var bb = SpecialFunctions.Gamma(a + b)/(SpecialFunctions.Gamma(a)*SpecialFunctions.Gamma(b)); return bb*Math.Pow(x, a - 1.0)*Math.Pow(1.0 - x, b - 1.0); } /// /// Computes the log probability density of the distribution (lnPDF) at x, i.e. ln(∂P(X ≤ x)/∂x). /// /// The α shape parameter of the Beta distribution. Range: α ≥ 0. /// The β shape parameter of the Beta distribution. Range: β ≥ 0. /// The location at which to compute the density. /// the log density at . /// public static double PDFLn(double a, double b, double x) { if (a < 0.0 || b < 0.0) { throw new ArgumentException("Invalid parametrization for the distribution."); } if (x < 0.0 || x > 1.0) { return double.NegativeInfinity; } if (double.IsPositiveInfinity(a) && double.IsPositiveInfinity(b)) { return x == 0.5 ? double.PositiveInfinity : double.NegativeInfinity; } if (double.IsPositiveInfinity(a)) { return x == 1.0 ? double.PositiveInfinity : double.NegativeInfinity; } if (double.IsPositiveInfinity(b)) { return x == 0.0 ? double.PositiveInfinity : double.NegativeInfinity; } if (a == 0.0 && b == 0.0) { return x == 0.0 || x == 1.0 ? double.PositiveInfinity : double.NegativeInfinity; } if (a == 0.0) { return x == 0.0 ? double.PositiveInfinity : double.NegativeInfinity; } if (b == 0.0) { return x == 1.0 ? double.PositiveInfinity : double.NegativeInfinity; } if (a == 1.0 && b == 1.0) { return 0.0; } var aa = SpecialFunctions.GammaLn(a + b) - SpecialFunctions.GammaLn(a) - SpecialFunctions.GammaLn(b); var bb = x == 0.0 ? (a == 1.0 ? 0.0 : double.NegativeInfinity) : (a - 1.0)*Math.Log(x); var cc = x == 1.0 ? (b == 1.0 ? 0.0 : double.NegativeInfinity) : (b - 1.0)*Math.Log(1.0 - x); return aa + bb + cc; } /// /// Computes the cumulative distribution (CDF) of the distribution at x, i.e. P(X ≤ x). /// /// The location at which to compute the cumulative distribution function. /// The α shape parameter of the Beta distribution. Range: α ≥ 0. /// The β shape parameter of the Beta distribution. Range: β ≥ 0. /// the cumulative distribution at location . /// public static double CDF(double a, double b, double x) { if (a < 0.0 || b < 0.0) { throw new ArgumentException("Invalid parametrization for the distribution."); } if (x < 0.0) { return 0.0; } if (x >= 1.0) { return 1.0; } if (double.IsPositiveInfinity(a) && double.IsPositiveInfinity(b)) { return x < 0.5 ? 0.0 : 1.0; } if (double.IsPositiveInfinity(a)) { return x < 1.0 ? 0.0 : 1.0; } if (double.IsPositiveInfinity(b)) { return x >= 0.0 ? 1.0 : 0.0; } if (a == 0.0 && b == 0.0) { if (x >= 0.0 && x < 1.0) { return 0.5; } return 1.0; } if (a == 0.0) { return 1.0; } if (b == 0.0) { return x >= 1.0 ? 1.0 : 0.0; } if (a == 1.0 && b == 1.0) { return x; } return SpecialFunctions.BetaRegularized(a, b, x); } /// /// Computes the inverse of the cumulative distribution function (InvCDF) for the distribution /// at the given probability. This is also known as the quantile or percent point function. /// /// The location at which to compute the inverse cumulative density. /// The α shape parameter of the Beta distribution. Range: α ≥ 0. /// The β shape parameter of the Beta distribution. Range: β ≥ 0. /// the inverse cumulative density at . /// /// WARNING: currently not an explicit implementation, hence slow and unreliable. public static double InvCDF(double a, double b, double p) { if (a < 0.0 || b < 0.0 || p < 0.0 || p > 1.0) { throw new ArgumentException("Invalid parametrization for the distribution."); } return Brent.FindRoot(x => SpecialFunctions.BetaRegularized(a, b, x) - p, 0.0, 1.0, accuracy: 1e-12); } /// /// Generates a sample from the distribution. /// /// The random number generator to use. /// The α shape parameter of the Beta distribution. Range: α ≥ 0. /// The β shape parameter of the Beta distribution. Range: β ≥ 0. /// a sample from the distribution. public static double Sample(System.Random rnd, double a, double b) { if (a < 0.0 || b < 0.0) { throw new ArgumentException("Invalid parametrization for the distribution."); } return SampleUnchecked(rnd, a, b); } /// /// Generates a sequence of samples from the distribution. /// /// The random number generator to use. /// The α shape parameter of the Beta distribution. Range: α ≥ 0. /// The β shape parameter of the Beta distribution. Range: β ≥ 0. /// a sequence of samples from the distribution. public static IEnumerable Samples(System.Random rnd, double a, double b) { if (a < 0.0 || b < 0.0) { throw new ArgumentException("Invalid parametrization for the distribution."); } return SamplesUnchecked(rnd, a, b); } /// /// Fills an array with samples generated from the distribution. /// /// The random number generator to use. /// The array to fill with the samples. /// The α shape parameter of the Beta distribution. Range: α ≥ 0. /// The β shape parameter of the Beta distribution. Range: β ≥ 0. /// a sequence of samples from the distribution. public static void Samples(System.Random rnd, double[] values, double a, double b) { if (a < 0.0 || b < 0.0) { throw new ArgumentException("Invalid parametrization for the distribution."); } SamplesUnchecked(rnd, values, a, b); } /// /// Generates a sample from the distribution. /// /// The α shape parameter of the Beta distribution. Range: α ≥ 0. /// The β shape parameter of the Beta distribution. Range: β ≥ 0. /// a sample from the distribution. public static double Sample(double a, double b) { if (a < 0.0 || b < 0.0) { throw new ArgumentException("Invalid parametrization for the distribution."); } return SampleUnchecked(SystemRandomSource.Default, a, b); } /// /// Generates a sequence of samples from the distribution. /// /// The α shape parameter of the Beta distribution. Range: α ≥ 0. /// The β shape parameter of the Beta distribution. Range: β ≥ 0. /// a sequence of samples from the distribution. public static IEnumerable Samples(double a, double b) { if (a < 0.0 || b < 0.0) { throw new ArgumentException("Invalid parametrization for the distribution."); } return SamplesUnchecked(SystemRandomSource.Default, a, b); } /// /// Fills an array with samples generated from the distribution. /// /// The array to fill with the samples. /// The α shape parameter of the Beta distribution. Range: α ≥ 0. /// The β shape parameter of the Beta distribution. Range: β ≥ 0. /// a sequence of samples from the distribution. public static void Samples(double[] values, double a, double b) { if (a < 0.0 || b < 0.0) { throw new ArgumentException("Invalid parametrization for the distribution."); } SamplesUnchecked(SystemRandomSource.Default, values, a, b); } } }