//
// Math.NET Numerics, part of the Math.NET Project
// http://numerics.mathdotnet.com
// http://github.com/mathnet/mathnet-numerics
//
// Copyright (c) 2009-2015 Math.NET
//
// Permission is hereby granted, free of charge, to any person
// obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without
// restriction, including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following
// conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
//
using System;
using System.Collections.Generic;
using IStation.Numerics.Random;
using IStation.Numerics.RootFinding;
using IStation.Numerics.Threading;
namespace IStation.Numerics.Distributions
{
///
/// Continuous Univariate Beta distribution.
/// For details about this distribution, see
/// Wikipedia - Beta distribution.
///
///
/// There are a few special cases for the parameterization of the Beta distribution. When both
/// shape parameters are positive infinity, the Beta distribution degenerates to a point distribution
/// at 0.5. When one of the shape parameters is positive infinity, the distribution degenerates to a point
/// distribution at the positive infinity. When both shape parameters are 0.0, the Beta distribution
/// degenerates to a Bernoulli distribution with parameter 0.5. When one shape parameter is 0.0, the
/// distribution degenerates to a point distribution at the non-zero shape parameter.
///
public class Beta : IContinuousDistribution
{
System.Random _random;
readonly double _shapeA;
readonly double _shapeB;
///
/// Initializes a new instance of the Beta class.
///
/// The α shape parameter of the Beta distribution. Range: α ≥ 0.
/// The β shape parameter of the Beta distribution. Range: β ≥ 0.
public Beta(double a, double b)
{
if (!IsValidParameterSet(a, b))
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
_random = SystemRandomSource.Default;
_shapeA = a;
_shapeB = b;
}
///
/// Initializes a new instance of the Beta class.
///
/// The α shape parameter of the Beta distribution. Range: α ≥ 0.
/// The β shape parameter of the Beta distribution. Range: β ≥ 0.
/// The random number generator which is used to draw random samples.
public Beta(double a, double b, System.Random randomSource)
{
if (!IsValidParameterSet(a, b))
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
_random = randomSource ?? SystemRandomSource.Default;
_shapeA = a;
_shapeB = b;
}
///
/// A string representation of the distribution.
///
/// A string representation of the Beta distribution.
public override string ToString()
{
return $"Beta(α = {_shapeA}, β = {_shapeB})";
}
///
/// Tests whether the provided values are valid parameters for this distribution.
///
/// The α shape parameter of the Beta distribution. Range: α ≥ 0.
/// The β shape parameter of the Beta distribution. Range: β ≥ 0.
public static bool IsValidParameterSet(double a, double b)
{
return a >= 0.0 && b >= 0.0;
}
///
/// Gets the α shape parameter of the Beta distribution. Range: α ≥ 0.
///
public double A => _shapeA;
///
/// Gets the β shape parameter of the Beta distribution. Range: β ≥ 0.
///
public double B => _shapeB;
///
/// Gets or sets the random number generator which is used to draw random samples.
///
public System.Random RandomSource
{
get => _random;
set => _random = value ?? SystemRandomSource.Default;
}
///
/// Gets the mean of the Beta distribution.
///
public double Mean
{
get
{
if (_shapeA == 0.0 && _shapeB == 0.0)
{
return 0.5;
}
if (_shapeA == 0.0)
{
return 0.0;
}
if (_shapeB == 0.0)
{
return 1.0;
}
if (double.IsPositiveInfinity(_shapeA) && double.IsPositiveInfinity(_shapeB))
{
return 0.5;
}
if (double.IsPositiveInfinity(_shapeA))
{
return 1.0;
}
if (double.IsPositiveInfinity(_shapeB))
{
return 0.0;
}
return _shapeA/(_shapeA + _shapeB);
}
}
///
/// Gets the variance of the Beta distribution.
///
public double Variance => (_shapeA*_shapeB)/((_shapeA + _shapeB)*(_shapeA + _shapeB)*(_shapeA + _shapeB + 1.0));
///
/// Gets the standard deviation of the Beta distribution.
///
public double StdDev => Math.Sqrt((_shapeA*_shapeB)/((_shapeA + _shapeB)*(_shapeA + _shapeB)*(_shapeA + _shapeB + 1.0)));
///
/// Gets the entropy of the Beta distribution.
///
public double Entropy
{
get
{
if (double.IsPositiveInfinity(_shapeA) || double.IsPositiveInfinity(_shapeB))
{
return 0.0;
}
if (_shapeA == 0.0 && _shapeB == 0.0)
{
return -Math.Log(0.5);
}
if (_shapeA == 0.0 || _shapeB == 0.0)
{
return 0.0;
}
return SpecialFunctions.BetaLn(_shapeA, _shapeB)
- ((_shapeA - 1.0)*SpecialFunctions.DiGamma(_shapeA))
- ((_shapeB - 1.0)*SpecialFunctions.DiGamma(_shapeB))
+ ((_shapeA + _shapeB - 2.0)*SpecialFunctions.DiGamma(_shapeA + _shapeB));
}
}
///
/// Gets the skewness of the Beta distribution.
///
public double Skewness
{
get
{
if (double.IsPositiveInfinity(_shapeA) && double.IsPositiveInfinity(_shapeB))
{
return 0.0;
}
if (double.IsPositiveInfinity(_shapeA))
{
return -2.0;
}
if (double.IsPositiveInfinity(_shapeB))
{
return 2.0;
}
if (_shapeA == 0.0 && _shapeB == 0.0)
{
return 0.0;
}
if (_shapeA == 0.0)
{
return 2.0;
}
if (_shapeB == 0.0)
{
return -2.0;
}
return 2.0*(_shapeB - _shapeA)*Math.Sqrt(_shapeA + _shapeB + 1.0)
/((_shapeA + _shapeB + 2.0)*Math.Sqrt(_shapeA*_shapeB));
}
}
///
/// Gets the mode of the Beta distribution; when there are multiple answers, this routine will return 0.5.
///
public double Mode
{
get
{
if (_shapeA == 0.0 && _shapeB == 0.0)
{
return 0.5;
}
if (_shapeA == 0.0)
{
return 0.0;
}
if (_shapeB == 0.0)
{
return 1.0;
}
if (double.IsPositiveInfinity(_shapeA) && double.IsPositiveInfinity(_shapeB))
{
return 0.5;
}
if (double.IsPositiveInfinity(_shapeA))
{
return 1.0;
}
if (double.IsPositiveInfinity(_shapeB))
{
return 0.0;
}
if (_shapeA == 1.0 && _shapeB == 1.0)
{
return 0.5;
}
return (_shapeA - 1)/(_shapeA + _shapeB - 2);
}
}
///
/// Gets the median of the Beta distribution.
///
public double Median => throw new NotSupportedException();
///
/// Gets the minimum of the Beta distribution.
///
public double Minimum => 0.0;
///
/// Gets the maximum of the Beta distribution.
///
public double Maximum => 1.0;
///
/// Computes the probability density of the distribution (PDF) at x, i.e. ∂P(X ≤ x)/∂x.
///
/// The location at which to compute the density.
/// the density at .
///
public double Density(double x)
{
return PDF(_shapeA, _shapeB, x);
}
///
/// Computes the log probability density of the distribution (lnPDF) at x, i.e. ln(∂P(X ≤ x)/∂x).
///
/// The location at which to compute the log density.
/// the log density at .
///
public double DensityLn(double x)
{
return PDFLn(_shapeA, _shapeB, x);
}
///
/// Computes the cumulative distribution (CDF) of the distribution at x, i.e. P(X ≤ x).
///
/// The location at which to compute the cumulative distribution function.
/// the cumulative distribution at location .
///
public double CumulativeDistribution(double x)
{
return CDF(_shapeA, _shapeB, x);
}
///
/// Computes the inverse of the cumulative distribution function (InvCDF) for the distribution
/// at the given probability. This is also known as the quantile or percent point function.
///
/// The location at which to compute the inverse cumulative density.
/// the inverse cumulative density at .
///
/// WARNING: currently not an explicit implementation, hence slow and unreliable.
public double InverseCumulativeDistribution(double p)
{
return InvCDF(_shapeA, _shapeB, p);
}
///
/// Generates a sample from the Beta distribution.
///
/// a sample from the distribution.
public double Sample()
{
return SampleUnchecked(_random, _shapeA, _shapeB);
}
///
/// Fills an array with samples generated from the distribution.
///
public void Samples(double[] values)
{
SamplesUnchecked(_random, values, _shapeA, _shapeB);
}
///
/// Generates a sequence of samples from the Beta distribution.
///
/// a sequence of samples from the distribution.
public IEnumerable Samples()
{
return SamplesUnchecked(_random, _shapeA, _shapeB);
}
///
/// Samples Beta distributed random variables by sampling two Gamma variables and normalizing.
///
/// The random number generator to use.
/// The α shape parameter of the Beta distribution. Range: α ≥ 0.
/// The β shape parameter of the Beta distribution. Range: β ≥ 0.
/// a random number from the Beta distribution.
internal static double SampleUnchecked(System.Random rnd, double a, double b)
{
var x = Gamma.SampleUnchecked(rnd, a, 1.0);
var y = Gamma.SampleUnchecked(rnd, b, 1.0);
return x/(x + y);
}
internal static void SamplesUnchecked(System.Random rnd, double[] values, double a, double b)
{
var y = new double[values.Length];
Gamma.SamplesUnchecked(rnd, values, a, 1.0);
Gamma.SamplesUnchecked(rnd, y, b, 1.0);
CommonParallel.For(0, values.Length, 4096, (aa, bb) =>
{
for (int i = aa; i < bb; i++)
{
values[i] = values[i]/(values[i] + y[i]);
}
});
}
static IEnumerable SamplesUnchecked(System.Random rnd, double a, double b)
{
while (true)
{
yield return SampleUnchecked(rnd, a, b);
}
}
///
/// Computes the probability density of the distribution (PDF) at x, i.e. ∂P(X ≤ x)/∂x.
///
/// The α shape parameter of the Beta distribution. Range: α ≥ 0.
/// The β shape parameter of the Beta distribution. Range: β ≥ 0.
/// The location at which to compute the density.
/// the density at .
///
public static double PDF(double a, double b, double x)
{
if (a < 0.0 || b < 0.0)
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
if (x < 0.0 || x > 1.0)
{
return 0.0;
}
if (double.IsPositiveInfinity(a) && double.IsPositiveInfinity(b))
{
return x == 0.5 ? double.PositiveInfinity : 0.0;
}
if (double.IsPositiveInfinity(a))
{
return x == 1.0 ? double.PositiveInfinity : 0.0;
}
if (double.IsPositiveInfinity(b))
{
return x == 0.0 ? double.PositiveInfinity : 0.0;
}
if (a == 0.0 && b == 0.0)
{
if (x == 0.0 || x == 1.0)
{
return double.PositiveInfinity;
}
return 0.0;
}
if (a == 0.0)
{
return x == 0.0 ? double.PositiveInfinity : 0.0;
}
if (b == 0.0)
{
return x == 1.0 ? double.PositiveInfinity : 0.0;
}
if (a == 1.0 && b == 1.0)
{
return 1.0;
}
if (a > 80.0 || b > 80.0)
{
return Math.Exp(PDFLn(a, b, x));
}
var bb = SpecialFunctions.Gamma(a + b)/(SpecialFunctions.Gamma(a)*SpecialFunctions.Gamma(b));
return bb*Math.Pow(x, a - 1.0)*Math.Pow(1.0 - x, b - 1.0);
}
///
/// Computes the log probability density of the distribution (lnPDF) at x, i.e. ln(∂P(X ≤ x)/∂x).
///
/// The α shape parameter of the Beta distribution. Range: α ≥ 0.
/// The β shape parameter of the Beta distribution. Range: β ≥ 0.
/// The location at which to compute the density.
/// the log density at .
///
public static double PDFLn(double a, double b, double x)
{
if (a < 0.0 || b < 0.0)
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
if (x < 0.0 || x > 1.0)
{
return double.NegativeInfinity;
}
if (double.IsPositiveInfinity(a) && double.IsPositiveInfinity(b))
{
return x == 0.5 ? double.PositiveInfinity : double.NegativeInfinity;
}
if (double.IsPositiveInfinity(a))
{
return x == 1.0 ? double.PositiveInfinity : double.NegativeInfinity;
}
if (double.IsPositiveInfinity(b))
{
return x == 0.0 ? double.PositiveInfinity : double.NegativeInfinity;
}
if (a == 0.0 && b == 0.0)
{
return x == 0.0 || x == 1.0 ? double.PositiveInfinity : double.NegativeInfinity;
}
if (a == 0.0)
{
return x == 0.0 ? double.PositiveInfinity : double.NegativeInfinity;
}
if (b == 0.0)
{
return x == 1.0 ? double.PositiveInfinity : double.NegativeInfinity;
}
if (a == 1.0 && b == 1.0)
{
return 0.0;
}
var aa = SpecialFunctions.GammaLn(a + b) - SpecialFunctions.GammaLn(a) - SpecialFunctions.GammaLn(b);
var bb = x == 0.0 ? (a == 1.0 ? 0.0 : double.NegativeInfinity) : (a - 1.0)*Math.Log(x);
var cc = x == 1.0 ? (b == 1.0 ? 0.0 : double.NegativeInfinity) : (b - 1.0)*Math.Log(1.0 - x);
return aa + bb + cc;
}
///
/// Computes the cumulative distribution (CDF) of the distribution at x, i.e. P(X ≤ x).
///
/// The location at which to compute the cumulative distribution function.
/// The α shape parameter of the Beta distribution. Range: α ≥ 0.
/// The β shape parameter of the Beta distribution. Range: β ≥ 0.
/// the cumulative distribution at location .
///
public static double CDF(double a, double b, double x)
{
if (a < 0.0 || b < 0.0)
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
if (x < 0.0)
{
return 0.0;
}
if (x >= 1.0)
{
return 1.0;
}
if (double.IsPositiveInfinity(a) && double.IsPositiveInfinity(b))
{
return x < 0.5 ? 0.0 : 1.0;
}
if (double.IsPositiveInfinity(a))
{
return x < 1.0 ? 0.0 : 1.0;
}
if (double.IsPositiveInfinity(b))
{
return x >= 0.0 ? 1.0 : 0.0;
}
if (a == 0.0 && b == 0.0)
{
if (x >= 0.0 && x < 1.0)
{
return 0.5;
}
return 1.0;
}
if (a == 0.0)
{
return 1.0;
}
if (b == 0.0)
{
return x >= 1.0 ? 1.0 : 0.0;
}
if (a == 1.0 && b == 1.0)
{
return x;
}
return SpecialFunctions.BetaRegularized(a, b, x);
}
///
/// Computes the inverse of the cumulative distribution function (InvCDF) for the distribution
/// at the given probability. This is also known as the quantile or percent point function.
///
/// The location at which to compute the inverse cumulative density.
/// The α shape parameter of the Beta distribution. Range: α ≥ 0.
/// The β shape parameter of the Beta distribution. Range: β ≥ 0.
/// the inverse cumulative density at .
///
/// WARNING: currently not an explicit implementation, hence slow and unreliable.
public static double InvCDF(double a, double b, double p)
{
if (a < 0.0 || b < 0.0 || p < 0.0 || p > 1.0)
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
return Brent.FindRoot(x => SpecialFunctions.BetaRegularized(a, b, x) - p, 0.0, 1.0, accuracy: 1e-12);
}
///
/// Generates a sample from the distribution.
///
/// The random number generator to use.
/// The α shape parameter of the Beta distribution. Range: α ≥ 0.
/// The β shape parameter of the Beta distribution. Range: β ≥ 0.
/// a sample from the distribution.
public static double Sample(System.Random rnd, double a, double b)
{
if (a < 0.0 || b < 0.0)
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
return SampleUnchecked(rnd, a, b);
}
///
/// Generates a sequence of samples from the distribution.
///
/// The random number generator to use.
/// The α shape parameter of the Beta distribution. Range: α ≥ 0.
/// The β shape parameter of the Beta distribution. Range: β ≥ 0.
/// a sequence of samples from the distribution.
public static IEnumerable Samples(System.Random rnd, double a, double b)
{
if (a < 0.0 || b < 0.0)
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
return SamplesUnchecked(rnd, a, b);
}
///
/// Fills an array with samples generated from the distribution.
///
/// The random number generator to use.
/// The array to fill with the samples.
/// The α shape parameter of the Beta distribution. Range: α ≥ 0.
/// The β shape parameter of the Beta distribution. Range: β ≥ 0.
/// a sequence of samples from the distribution.
public static void Samples(System.Random rnd, double[] values, double a, double b)
{
if (a < 0.0 || b < 0.0)
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
SamplesUnchecked(rnd, values, a, b);
}
///
/// Generates a sample from the distribution.
///
/// The α shape parameter of the Beta distribution. Range: α ≥ 0.
/// The β shape parameter of the Beta distribution. Range: β ≥ 0.
/// a sample from the distribution.
public static double Sample(double a, double b)
{
if (a < 0.0 || b < 0.0)
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
return SampleUnchecked(SystemRandomSource.Default, a, b);
}
///
/// Generates a sequence of samples from the distribution.
///
/// The α shape parameter of the Beta distribution. Range: α ≥ 0.
/// The β shape parameter of the Beta distribution. Range: β ≥ 0.
/// a sequence of samples from the distribution.
public static IEnumerable Samples(double a, double b)
{
if (a < 0.0 || b < 0.0)
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
return SamplesUnchecked(SystemRandomSource.Default, a, b);
}
///
/// Fills an array with samples generated from the distribution.
///
/// The array to fill with the samples.
/// The α shape parameter of the Beta distribution. Range: α ≥ 0.
/// The β shape parameter of the Beta distribution. Range: β ≥ 0.
/// a sequence of samples from the distribution.
public static void Samples(double[] values, double a, double b)
{
if (a < 0.0 || b < 0.0)
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
SamplesUnchecked(SystemRandomSource.Default, values, a, b);
}
}
}