// // Math.NET Numerics, part of the Math.NET Project // http://numerics.mathdotnet.com // http://github.com/mathnet/mathnet-numerics // // Copyright (c) 2009-2014 Math.NET // // Permission is hereby granted, free of charge, to any person // obtaining a copy of this software and associated documentation // files (the "Software"), to deal in the Software without // restriction, including without limitation the rights to use, // copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the // Software is furnished to do so, subject to the following // conditions: // // The above copyright notice and this permission notice shall be // included in all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES // OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT // HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, // WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR // OTHER DEALINGS IN THE SOFTWARE. // using System; using System.Collections.Generic; using IStation.Numerics.Random; using IStation.Numerics.Threading; namespace IStation.Numerics.Distributions { /// /// Discrete Univariate Conway-Maxwell-Poisson distribution. /// The Conway-Maxwell-Poisson distribution is a generalization of the Poisson, Geometric and Bernoulli /// distributions. It is parameterized by two real numbers "lambda" and "nu". For /// /// nu = 0 the distribution reverts to a Geometric distribution /// nu = 1 the distribution reverts to the Poisson distribution /// nu -> infinity the distribution converges to a Bernoulli distribution /// /// This implementation will cache the value of the normalization constant. /// Wikipedia - ConwayMaxwellPoisson distribution. /// public class ConwayMaxwellPoisson : IDiscreteDistribution { System.Random _random; readonly double _lambda; readonly double _nu; /// /// The mean of the distribution. /// double _mean = double.MinValue; /// /// The variance of the distribution. /// double _variance = double.MinValue; /// /// Caches the value of the normalization constant. /// double _z = double.MinValue; /// /// Since many properties of the distribution can only be computed approximately, the tolerance /// level specifies how much error we accept. /// const double Tolerance = 1e-12; /// /// Initializes a new instance of the class. /// /// The lambda (λ) parameter. Range: λ > 0. /// The rate of decay (ν) parameter. Range: ν ≥ 0. public ConwayMaxwellPoisson(double lambda, double nu) { if (!IsValidParameterSet(lambda, nu)) { throw new ArgumentException("Invalid parametrization for the distribution."); } _random = SystemRandomSource.Default; _lambda = lambda; _nu = nu; } /// /// Initializes a new instance of the class. /// /// The lambda (λ) parameter. Range: λ > 0. /// The rate of decay (ν) parameter. Range: ν ≥ 0. /// The random number generator which is used to draw random samples. public ConwayMaxwellPoisson(double lambda, double nu, System.Random randomSource) { if (!IsValidParameterSet(lambda, nu)) { throw new ArgumentException("Invalid parametrization for the distribution."); } _random = randomSource ?? SystemRandomSource.Default; _lambda = lambda; _nu = nu; } /// /// Returns a that represents this instance. /// /// A that represents this instance. public override string ToString() { return $"ConwayMaxwellPoisson(λ = {_lambda}, ν = {_nu})"; } /// /// Tests whether the provided values are valid parameters for this distribution. /// /// The lambda (λ) parameter. Range: λ > 0. /// The rate of decay (ν) parameter. Range: ν ≥ 0. public static bool IsValidParameterSet(double lambda, double nu) { return lambda > 0.0 && nu >= 0.0; } /// /// Gets the lambda (λ) parameter. Range: λ > 0. /// public double Lambda => _lambda; /// /// Gets the rate of decay (ν) parameter. Range: ν ≥ 0. /// public double Nu => _nu; /// /// Gets or sets the random number generator which is used to draw random samples. /// public System.Random RandomSource { get => _random; set => _random = value ?? SystemRandomSource.Default; } /// /// Gets the mean of the distribution. /// public double Mean { get { // Special case requiring no computation. if (_lambda == 0) { return 0.0; } if (_mean != double.MinValue) { return _mean; } // The normalization constant for the distribution. var z = 1 + _lambda; // The probability of the next term. var a1 = _lambda*_lambda/Math.Pow(2, _nu); // The unnormalized mean. var zx = _lambda; // The contribution of the next term to the mean. var ax1 = 2*a1; for (var i = 3; i < 1000; i++) { var e = _lambda/Math.Pow(i, _nu); var ex = _lambda/Math.Pow(i, _nu - 1)/(i - 1); var a2 = a1*e; var ax2 = ax1*ex; if ((ax2 < ax1) && (a2 < a1)) { var m = zx/z; var upper = (zx + (ax1/(1 - (ax2/ax1))))/z; var lower = zx/(z + (a1/(1 - (a2/a1)))); var r = (upper - lower)/m; if (r < Tolerance) { break; } } z = z + a1; zx = zx + ax1; a1 = a2; ax1 = ax2; } _mean = zx/z; return _mean; } } /// /// Gets the variance of the distribution. /// public double Variance { get { // Special case requiring no computation. if (_lambda == 0) { return 0.0; } if (_variance != double.MinValue) { return _variance; } // The normalization constant for the distribution. var z = 1 + _lambda; // The probability of the next term. var a1 = _lambda*_lambda/Math.Pow(2, _nu); // The unnormalized second moment. var zxx = _lambda; // The contribution of the next term to the second moment. var axx1 = 4*a1; for (var i = 3; i < 1000; i++) { var e = _lambda/Math.Pow(i, _nu); var exx = _lambda/Math.Pow(i, _nu - 2)/(i - 1)/(i - 1); var a2 = a1*e; var axx2 = axx1*exx; if ((axx2 < axx1) && (a2 < a1)) { var m = zxx/z; var upper = (zxx + (axx1/(1 - (axx2/axx1))))/z; var lower = zxx/(z + (a1/(1 - (a2/a1)))); var r = (upper - lower)/m; if (r < Tolerance) { break; } } z = z + a1; zxx = zxx + axx1; a1 = a2; axx1 = axx2; } var mean = Mean; _variance = (zxx/z) - (mean*mean); return _variance; } } /// /// Gets the standard deviation of the distribution. /// public double StdDev => Math.Sqrt(Variance); /// /// Gets the entropy of the distribution. /// public double Entropy => throw new NotSupportedException(); /// /// Gets the skewness of the distribution. /// public double Skewness => throw new NotSupportedException(); /// /// Gets the mode of the distribution /// public int Mode => throw new NotSupportedException(); /// /// Gets the median of the distribution. /// public double Median => throw new NotSupportedException(); /// /// Gets the smallest element in the domain of the distributions which can be represented by an integer. /// public int Minimum => 0; /// /// Gets the largest element in the domain of the distributions which can be represented by an integer. /// public int Maximum => throw new NotSupportedException(); /// /// Computes the probability mass (PMF) at k, i.e. P(X = k). /// /// The location in the domain where we want to evaluate the probability mass function. /// the probability mass at location . public double Probability(int k) { return Math.Pow(_lambda, k)/Math.Pow(SpecialFunctions.Factorial(k), _nu)/Z; } /// /// Computes the log probability mass (lnPMF) at k, i.e. ln(P(X = k)). /// /// The location in the domain where we want to evaluate the log probability mass function. /// the log probability mass at location . public double ProbabilityLn(int k) { return k*Math.Log(_lambda) - _nu*SpecialFunctions.FactorialLn(k) - Math.Log(Z); } /// /// Computes the cumulative distribution (CDF) of the distribution at x, i.e. P(X ≤ x). /// /// The location at which to compute the cumulative distribution function. /// the cumulative distribution at location . public double CumulativeDistribution(double x) { var z = Z; double sum = 0; for (var i = 0; i < x + 1; i++) { sum += Math.Pow(_lambda, i)/Math.Pow(SpecialFunctions.Factorial(i), _nu)/z; } return sum; } /// /// Computes the probability mass (PMF) at k, i.e. P(X = k). /// /// The location in the domain where we want to evaluate the probability mass function. /// The lambda (λ) parameter. Range: λ > 0. /// The rate of decay (ν) parameter. Range: ν ≥ 0. /// the probability mass at location . public static double PMF(double lambda, double nu, int k) { if (!(lambda > 0.0 && nu >= 0.0)) { throw new ArgumentException("Invalid parametrization for the distribution."); } var z = Normalization(lambda, nu); return Math.Pow(lambda, k)/Math.Pow(SpecialFunctions.Factorial(k), nu)/z; } /// /// Computes the log probability mass (lnPMF) at k, i.e. ln(P(X = k)). /// /// The location in the domain where we want to evaluate the log probability mass function. /// The lambda (λ) parameter. Range: λ > 0. /// The rate of decay (ν) parameter. Range: ν ≥ 0. /// the log probability mass at location . public static double PMFLn(double lambda, double nu, int k) { if (!(lambda > 0.0 && nu >= 0.0)) { throw new ArgumentException("Invalid parametrization for the distribution."); } var z = Normalization(lambda, nu); return k*Math.Log(lambda) - nu*SpecialFunctions.FactorialLn(k) - Math.Log(z); } /// /// Computes the cumulative distribution (CDF) of the distribution at x, i.e. P(X ≤ x). /// /// The location at which to compute the cumulative distribution function. /// The lambda (λ) parameter. Range: λ > 0. /// The rate of decay (ν) parameter. Range: ν ≥ 0. /// the cumulative distribution at location . /// public static double CDF(double lambda, double nu, double x) { if (!(lambda > 0.0 && nu >= 0.0)) { throw new ArgumentException("Invalid parametrization for the distribution."); } var z = Normalization(lambda, nu); double sum = 0; for (var i = 0; i < x + 1; i++) { sum += Math.Pow(lambda, i)/Math.Pow(SpecialFunctions.Factorial(i), nu)/z; } return sum; } /// /// Gets the normalization constant of the Conway-Maxwell-Poisson distribution. /// double Z { get { if (_z != double.MinValue) { return _z; } _z = Normalization(_lambda, _nu); return _z; } } /// /// Computes an approximate normalization constant for the CMP distribution. /// /// The lambda (λ) parameter for the CMP distribution. /// The rate of decay (ν) parameter for the CMP distribution. /// /// an approximate normalization constant for the CMP distribution. /// static double Normalization(double lambda, double nu) { // Initialize Z with the first two terms. var z = 1.0 + lambda; // Remembers the last term added. var t = lambda; // Start adding more terms until convergence. for (var i = 2; i < 1000; i++) { // The new addition for term i. var e = lambda/Math.Pow(i, nu); // The new term. t = t*e; // The updated normalization constant. z = z + t; // The stopping criterion. if (e < 1) { if (t/(1 - e)/z < Tolerance) { break; } } } return z; } /// /// Returns one trials from the distribution. /// /// The random number generator to use. /// The lambda (λ) parameter. Range: λ > 0. /// The rate of decay (ν) parameter. Range: ν ≥ 0. /// The z parameter. /// /// One sample from the distribution implied by , , and . /// static int SampleUnchecked(System.Random rnd, double lambda, double nu, double z) { var u = rnd.NextDouble(); var p = 1.0/z; var cdf = p; var i = 0; while (u > cdf) { i++; p = p*lambda/Math.Pow(i, nu); cdf += p; } return i; } static void SamplesUnchecked(System.Random rnd, int[] values, double lambda, double nu, double z) { var uniform = rnd.NextDoubles(values.Length); CommonParallel.For(0, values.Length, 4096, (a, b) => { for (int i = a; i < b; i++) { var u = uniform[i]; var p = 1.0/z; var cdf = p; var k = 0; while (u > cdf) { k++; p = p*lambda/Math.Pow(k, nu); cdf += p; } values[i] = k; } }); } static IEnumerable SamplesUnchecked(System.Random rnd, double lambda, double nu, double z) { while (true) { yield return SampleUnchecked(rnd, lambda, nu, z); } } /// /// Samples a Conway-Maxwell-Poisson distributed random variable. /// /// a sample from the distribution. public int Sample() { return SampleUnchecked(_random, _lambda, _nu, Z); } /// /// Fills an array with samples generated from the distribution. /// public void Samples(int[] values) { SamplesUnchecked(_random, values, _lambda, _nu, Z); } /// /// Samples a sequence of a Conway-Maxwell-Poisson distributed random variables. /// /// /// a sequence of samples from a Conway-Maxwell-Poisson distribution. /// public IEnumerable Samples() { return SamplesUnchecked(_random, _lambda, _nu, Z); } /// /// Samples a random variable. /// /// The random number generator to use. /// The lambda (λ) parameter. Range: λ > 0. /// The rate of decay (ν) parameter. Range: ν ≥ 0. public static int Sample(System.Random rnd, double lambda, double nu) { if (!(lambda > 0.0 && nu >= 0.0)) { throw new ArgumentException("Invalid parametrization for the distribution."); } var z = Normalization(lambda, nu); return SampleUnchecked(rnd, lambda, nu, z); } /// /// Samples a sequence of this random variable. /// /// The random number generator to use. /// The lambda (λ) parameter. Range: λ > 0. /// The rate of decay (ν) parameter. Range: ν ≥ 0. public static IEnumerable Samples(System.Random rnd, double lambda, double nu) { if (!(lambda > 0.0 && nu >= 0.0)) { throw new ArgumentException("Invalid parametrization for the distribution."); } var z = Normalization(lambda, nu); return SamplesUnchecked(rnd, lambda, nu, z); } /// /// Fills an array with samples generated from the distribution. /// /// The random number generator to use. /// The array to fill with the samples. /// The lambda (λ) parameter. Range: λ > 0. /// The rate of decay (ν) parameter. Range: ν ≥ 0. public static void Samples(System.Random rnd, int[] values, double lambda, double nu) { if (!(lambda > 0.0 && nu >= 0.0)) { throw new ArgumentException("Invalid parametrization for the distribution."); } var z = Normalization(lambda, nu); SamplesUnchecked(rnd, values, lambda, nu, z); } /// /// Samples a random variable. /// /// The lambda (λ) parameter. Range: λ > 0. /// The rate of decay (ν) parameter. Range: ν ≥ 0. public static int Sample(double lambda, double nu) { if (!(lambda > 0.0 && nu >= 0.0)) { throw new ArgumentException("Invalid parametrization for the distribution."); } var z = Normalization(lambda, nu); return SampleUnchecked(SystemRandomSource.Default, lambda, nu, z); } /// /// Samples a sequence of this random variable. /// /// The lambda (λ) parameter. Range: λ > 0. /// The rate of decay (ν) parameter. Range: ν ≥ 0. public static IEnumerable Samples(double lambda, double nu) { if (!(lambda > 0.0 && nu >= 0.0)) { throw new ArgumentException("Invalid parametrization for the distribution."); } var z = Normalization(lambda, nu); return SamplesUnchecked(SystemRandomSource.Default, lambda, nu, z); } /// /// Fills an array with samples generated from the distribution. /// /// The array to fill with the samples. /// The lambda (λ) parameter. Range: λ > 0. /// The rate of decay (ν) parameter. Range: ν ≥ 0. public static void Samples(int[] values, double lambda, double nu) { if (!(lambda > 0.0 && nu >= 0.0)) { throw new ArgumentException("Invalid parametrization for the distribution."); } var z = Normalization(lambda, nu); SamplesUnchecked(SystemRandomSource.Default, values, lambda, nu, z); } } }