//
// Math.NET Numerics, part of the Math.NET Project
// http://numerics.mathdotnet.com
// http://github.com/mathnet/mathnet-numerics
//
// Copyright (c) 2009-2014 Math.NET
//
// Permission is hereby granted, free of charge, to any person
// obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without
// restriction, including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following
// conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
//
using System;
using System.Collections.Generic;
using IStation.Numerics.Random;
using IStation.Numerics.Threading;
namespace IStation.Numerics.Distributions
{
///
/// Discrete Univariate Conway-Maxwell-Poisson distribution.
/// The Conway-Maxwell-Poisson distribution is a generalization of the Poisson, Geometric and Bernoulli
/// distributions. It is parameterized by two real numbers "lambda" and "nu". For
///
/// - nu = 0 the distribution reverts to a Geometric distribution
/// - nu = 1 the distribution reverts to the Poisson distribution
/// - nu -> infinity the distribution converges to a Bernoulli distribution
///
/// This implementation will cache the value of the normalization constant.
/// Wikipedia - ConwayMaxwellPoisson distribution.
///
public class ConwayMaxwellPoisson : IDiscreteDistribution
{
System.Random _random;
readonly double _lambda;
readonly double _nu;
///
/// The mean of the distribution.
///
double _mean = double.MinValue;
///
/// The variance of the distribution.
///
double _variance = double.MinValue;
///
/// Caches the value of the normalization constant.
///
double _z = double.MinValue;
///
/// Since many properties of the distribution can only be computed approximately, the tolerance
/// level specifies how much error we accept.
///
const double Tolerance = 1e-12;
///
/// Initializes a new instance of the class.
///
/// The lambda (λ) parameter. Range: λ > 0.
/// The rate of decay (ν) parameter. Range: ν ≥ 0.
public ConwayMaxwellPoisson(double lambda, double nu)
{
if (!IsValidParameterSet(lambda, nu))
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
_random = SystemRandomSource.Default;
_lambda = lambda;
_nu = nu;
}
///
/// Initializes a new instance of the class.
///
/// The lambda (λ) parameter. Range: λ > 0.
/// The rate of decay (ν) parameter. Range: ν ≥ 0.
/// The random number generator which is used to draw random samples.
public ConwayMaxwellPoisson(double lambda, double nu, System.Random randomSource)
{
if (!IsValidParameterSet(lambda, nu))
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
_random = randomSource ?? SystemRandomSource.Default;
_lambda = lambda;
_nu = nu;
}
///
/// Returns a that represents this instance.
///
/// A that represents this instance.
public override string ToString()
{
return $"ConwayMaxwellPoisson(λ = {_lambda}, ν = {_nu})";
}
///
/// Tests whether the provided values are valid parameters for this distribution.
///
/// The lambda (λ) parameter. Range: λ > 0.
/// The rate of decay (ν) parameter. Range: ν ≥ 0.
public static bool IsValidParameterSet(double lambda, double nu)
{
return lambda > 0.0 && nu >= 0.0;
}
///
/// Gets the lambda (λ) parameter. Range: λ > 0.
///
public double Lambda => _lambda;
///
/// Gets the rate of decay (ν) parameter. Range: ν ≥ 0.
///
public double Nu => _nu;
///
/// Gets or sets the random number generator which is used to draw random samples.
///
public System.Random RandomSource
{
get => _random;
set => _random = value ?? SystemRandomSource.Default;
}
///
/// Gets the mean of the distribution.
///
public double Mean
{
get
{
// Special case requiring no computation.
if (_lambda == 0)
{
return 0.0;
}
if (_mean != double.MinValue)
{
return _mean;
}
// The normalization constant for the distribution.
var z = 1 + _lambda;
// The probability of the next term.
var a1 = _lambda*_lambda/Math.Pow(2, _nu);
// The unnormalized mean.
var zx = _lambda;
// The contribution of the next term to the mean.
var ax1 = 2*a1;
for (var i = 3; i < 1000; i++)
{
var e = _lambda/Math.Pow(i, _nu);
var ex = _lambda/Math.Pow(i, _nu - 1)/(i - 1);
var a2 = a1*e;
var ax2 = ax1*ex;
if ((ax2 < ax1) && (a2 < a1))
{
var m = zx/z;
var upper = (zx + (ax1/(1 - (ax2/ax1))))/z;
var lower = zx/(z + (a1/(1 - (a2/a1))));
var r = (upper - lower)/m;
if (r < Tolerance)
{
break;
}
}
z = z + a1;
zx = zx + ax1;
a1 = a2;
ax1 = ax2;
}
_mean = zx/z;
return _mean;
}
}
///
/// Gets the variance of the distribution.
///
public double Variance
{
get
{
// Special case requiring no computation.
if (_lambda == 0)
{
return 0.0;
}
if (_variance != double.MinValue)
{
return _variance;
}
// The normalization constant for the distribution.
var z = 1 + _lambda;
// The probability of the next term.
var a1 = _lambda*_lambda/Math.Pow(2, _nu);
// The unnormalized second moment.
var zxx = _lambda;
// The contribution of the next term to the second moment.
var axx1 = 4*a1;
for (var i = 3; i < 1000; i++)
{
var e = _lambda/Math.Pow(i, _nu);
var exx = _lambda/Math.Pow(i, _nu - 2)/(i - 1)/(i - 1);
var a2 = a1*e;
var axx2 = axx1*exx;
if ((axx2 < axx1) && (a2 < a1))
{
var m = zxx/z;
var upper = (zxx + (axx1/(1 - (axx2/axx1))))/z;
var lower = zxx/(z + (a1/(1 - (a2/a1))));
var r = (upper - lower)/m;
if (r < Tolerance)
{
break;
}
}
z = z + a1;
zxx = zxx + axx1;
a1 = a2;
axx1 = axx2;
}
var mean = Mean;
_variance = (zxx/z) - (mean*mean);
return _variance;
}
}
///
/// Gets the standard deviation of the distribution.
///
public double StdDev => Math.Sqrt(Variance);
///
/// Gets the entropy of the distribution.
///
public double Entropy => throw new NotSupportedException();
///
/// Gets the skewness of the distribution.
///
public double Skewness => throw new NotSupportedException();
///
/// Gets the mode of the distribution
///
public int Mode => throw new NotSupportedException();
///
/// Gets the median of the distribution.
///
public double Median => throw new NotSupportedException();
///
/// Gets the smallest element in the domain of the distributions which can be represented by an integer.
///
public int Minimum => 0;
///
/// Gets the largest element in the domain of the distributions which can be represented by an integer.
///
public int Maximum => throw new NotSupportedException();
///
/// Computes the probability mass (PMF) at k, i.e. P(X = k).
///
/// The location in the domain where we want to evaluate the probability mass function.
/// the probability mass at location .
public double Probability(int k)
{
return Math.Pow(_lambda, k)/Math.Pow(SpecialFunctions.Factorial(k), _nu)/Z;
}
///
/// Computes the log probability mass (lnPMF) at k, i.e. ln(P(X = k)).
///
/// The location in the domain where we want to evaluate the log probability mass function.
/// the log probability mass at location .
public double ProbabilityLn(int k)
{
return k*Math.Log(_lambda) - _nu*SpecialFunctions.FactorialLn(k) - Math.Log(Z);
}
///
/// Computes the cumulative distribution (CDF) of the distribution at x, i.e. P(X ≤ x).
///
/// The location at which to compute the cumulative distribution function.
/// the cumulative distribution at location .
public double CumulativeDistribution(double x)
{
var z = Z;
double sum = 0;
for (var i = 0; i < x + 1; i++)
{
sum += Math.Pow(_lambda, i)/Math.Pow(SpecialFunctions.Factorial(i), _nu)/z;
}
return sum;
}
///
/// Computes the probability mass (PMF) at k, i.e. P(X = k).
///
/// The location in the domain where we want to evaluate the probability mass function.
/// The lambda (λ) parameter. Range: λ > 0.
/// The rate of decay (ν) parameter. Range: ν ≥ 0.
/// the probability mass at location .
public static double PMF(double lambda, double nu, int k)
{
if (!(lambda > 0.0 && nu >= 0.0))
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
var z = Normalization(lambda, nu);
return Math.Pow(lambda, k)/Math.Pow(SpecialFunctions.Factorial(k), nu)/z;
}
///
/// Computes the log probability mass (lnPMF) at k, i.e. ln(P(X = k)).
///
/// The location in the domain where we want to evaluate the log probability mass function.
/// The lambda (λ) parameter. Range: λ > 0.
/// The rate of decay (ν) parameter. Range: ν ≥ 0.
/// the log probability mass at location .
public static double PMFLn(double lambda, double nu, int k)
{
if (!(lambda > 0.0 && nu >= 0.0))
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
var z = Normalization(lambda, nu);
return k*Math.Log(lambda) - nu*SpecialFunctions.FactorialLn(k) - Math.Log(z);
}
///
/// Computes the cumulative distribution (CDF) of the distribution at x, i.e. P(X ≤ x).
///
/// The location at which to compute the cumulative distribution function.
/// The lambda (λ) parameter. Range: λ > 0.
/// The rate of decay (ν) parameter. Range: ν ≥ 0.
/// the cumulative distribution at location .
///
public static double CDF(double lambda, double nu, double x)
{
if (!(lambda > 0.0 && nu >= 0.0))
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
var z = Normalization(lambda, nu);
double sum = 0;
for (var i = 0; i < x + 1; i++)
{
sum += Math.Pow(lambda, i)/Math.Pow(SpecialFunctions.Factorial(i), nu)/z;
}
return sum;
}
///
/// Gets the normalization constant of the Conway-Maxwell-Poisson distribution.
///
double Z
{
get
{
if (_z != double.MinValue)
{
return _z;
}
_z = Normalization(_lambda, _nu);
return _z;
}
}
///
/// Computes an approximate normalization constant for the CMP distribution.
///
/// The lambda (λ) parameter for the CMP distribution.
/// The rate of decay (ν) parameter for the CMP distribution.
///
/// an approximate normalization constant for the CMP distribution.
///
static double Normalization(double lambda, double nu)
{
// Initialize Z with the first two terms.
var z = 1.0 + lambda;
// Remembers the last term added.
var t = lambda;
// Start adding more terms until convergence.
for (var i = 2; i < 1000; i++)
{
// The new addition for term i.
var e = lambda/Math.Pow(i, nu);
// The new term.
t = t*e;
// The updated normalization constant.
z = z + t;
// The stopping criterion.
if (e < 1)
{
if (t/(1 - e)/z < Tolerance)
{
break;
}
}
}
return z;
}
///
/// Returns one trials from the distribution.
///
/// The random number generator to use.
/// The lambda (λ) parameter. Range: λ > 0.
/// The rate of decay (ν) parameter. Range: ν ≥ 0.
/// The z parameter.
///
/// One sample from the distribution implied by , , and .
///
static int SampleUnchecked(System.Random rnd, double lambda, double nu, double z)
{
var u = rnd.NextDouble();
var p = 1.0/z;
var cdf = p;
var i = 0;
while (u > cdf)
{
i++;
p = p*lambda/Math.Pow(i, nu);
cdf += p;
}
return i;
}
static void SamplesUnchecked(System.Random rnd, int[] values, double lambda, double nu, double z)
{
var uniform = rnd.NextDoubles(values.Length);
CommonParallel.For(0, values.Length, 4096, (a, b) =>
{
for (int i = a; i < b; i++)
{
var u = uniform[i];
var p = 1.0/z;
var cdf = p;
var k = 0;
while (u > cdf)
{
k++;
p = p*lambda/Math.Pow(k, nu);
cdf += p;
}
values[i] = k;
}
});
}
static IEnumerable SamplesUnchecked(System.Random rnd, double lambda, double nu, double z)
{
while (true)
{
yield return SampleUnchecked(rnd, lambda, nu, z);
}
}
///
/// Samples a Conway-Maxwell-Poisson distributed random variable.
///
/// a sample from the distribution.
public int Sample()
{
return SampleUnchecked(_random, _lambda, _nu, Z);
}
///
/// Fills an array with samples generated from the distribution.
///
public void Samples(int[] values)
{
SamplesUnchecked(_random, values, _lambda, _nu, Z);
}
///
/// Samples a sequence of a Conway-Maxwell-Poisson distributed random variables.
///
///
/// a sequence of samples from a Conway-Maxwell-Poisson distribution.
///
public IEnumerable Samples()
{
return SamplesUnchecked(_random, _lambda, _nu, Z);
}
///
/// Samples a random variable.
///
/// The random number generator to use.
/// The lambda (λ) parameter. Range: λ > 0.
/// The rate of decay (ν) parameter. Range: ν ≥ 0.
public static int Sample(System.Random rnd, double lambda, double nu)
{
if (!(lambda > 0.0 && nu >= 0.0))
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
var z = Normalization(lambda, nu);
return SampleUnchecked(rnd, lambda, nu, z);
}
///
/// Samples a sequence of this random variable.
///
/// The random number generator to use.
/// The lambda (λ) parameter. Range: λ > 0.
/// The rate of decay (ν) parameter. Range: ν ≥ 0.
public static IEnumerable Samples(System.Random rnd, double lambda, double nu)
{
if (!(lambda > 0.0 && nu >= 0.0))
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
var z = Normalization(lambda, nu);
return SamplesUnchecked(rnd, lambda, nu, z);
}
///
/// Fills an array with samples generated from the distribution.
///
/// The random number generator to use.
/// The array to fill with the samples.
/// The lambda (λ) parameter. Range: λ > 0.
/// The rate of decay (ν) parameter. Range: ν ≥ 0.
public static void Samples(System.Random rnd, int[] values, double lambda, double nu)
{
if (!(lambda > 0.0 && nu >= 0.0))
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
var z = Normalization(lambda, nu);
SamplesUnchecked(rnd, values, lambda, nu, z);
}
///
/// Samples a random variable.
///
/// The lambda (λ) parameter. Range: λ > 0.
/// The rate of decay (ν) parameter. Range: ν ≥ 0.
public static int Sample(double lambda, double nu)
{
if (!(lambda > 0.0 && nu >= 0.0))
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
var z = Normalization(lambda, nu);
return SampleUnchecked(SystemRandomSource.Default, lambda, nu, z);
}
///
/// Samples a sequence of this random variable.
///
/// The lambda (λ) parameter. Range: λ > 0.
/// The rate of decay (ν) parameter. Range: ν ≥ 0.
public static IEnumerable Samples(double lambda, double nu)
{
if (!(lambda > 0.0 && nu >= 0.0))
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
var z = Normalization(lambda, nu);
return SamplesUnchecked(SystemRandomSource.Default, lambda, nu, z);
}
///
/// Fills an array with samples generated from the distribution.
///
/// The array to fill with the samples.
/// The lambda (λ) parameter. Range: λ > 0.
/// The rate of decay (ν) parameter. Range: ν ≥ 0.
public static void Samples(int[] values, double lambda, double nu)
{
if (!(lambda > 0.0 && nu >= 0.0))
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
var z = Normalization(lambda, nu);
SamplesUnchecked(SystemRandomSource.Default, values, lambda, nu, z);
}
}
}