//
// Math.NET Numerics, part of the Math.NET Project
// http://numerics.mathdotnet.com
// http://github.com/mathnet/mathnet-numerics
//
// Copyright (c) 2009-2014 Math.NET
//
// Permission is hereby granted, free of charge, to any person
// obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without
// restriction, including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following
// conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
//
using System;
using System.Collections.Generic;
using IStation.Numerics.Random;
namespace IStation.Numerics.Distributions
{
///
/// Continuous Univariate Gamma distribution.
/// For details about this distribution, see
/// Wikipedia - Gamma distribution.
///
///
/// The Gamma distribution is parametrized by a shape and inverse scale parameter. When we want
/// to specify a Gamma distribution which is a point distribution we set the shape parameter to be the
/// location of the point distribution and the inverse scale as positive infinity. The distribution
/// with shape and inverse scale both zero is undefined.
///
/// Random number generation for the Gamma distribution is based on the algorithm in:
/// "A Simple Method for Generating Gamma Variables" - Marsaglia & Tsang
/// ACM Transactions on Mathematical Software, Vol. 26, No. 3, September 2000, Pages 363–372.
///
public class Gamma : IContinuousDistribution
{
System.Random _random;
readonly double _shape;
readonly double _rate;
///
/// Initializes a new instance of the Gamma class.
///
/// The shape (k, α) of the Gamma distribution. Range: α ≥ 0.
/// The rate or inverse scale (β) of the Gamma distribution. Range: β ≥ 0.
public Gamma(double shape, double rate)
{
if (!IsValidParameterSet(shape, rate))
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
_random = SystemRandomSource.Default;
_shape = shape;
_rate = rate;
}
///
/// Initializes a new instance of the Gamma class.
///
/// The shape (k, α) of the Gamma distribution. Range: α ≥ 0.
/// The rate or inverse scale (β) of the Gamma distribution. Range: β ≥ 0.
/// The random number generator which is used to draw random samples.
public Gamma(double shape, double rate, System.Random randomSource)
{
if (!IsValidParameterSet(shape, rate))
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
_random = randomSource ?? SystemRandomSource.Default;
_shape = shape;
_rate = rate;
}
///
/// Constructs a Gamma distribution from a shape and scale parameter. The distribution will
/// be initialized with the default random number generator.
///
/// The shape (k) of the Gamma distribution. Range: k ≥ 0.
/// The scale (θ) of the Gamma distribution. Range: θ ≥ 0
/// The random number generator which is used to draw random samples. Optional, can be null.
public static Gamma WithShapeScale(double shape, double scale, System.Random randomSource = null)
{
return new Gamma(shape, 1.0/scale, randomSource);
}
///
/// Constructs a Gamma distribution from a shape and inverse scale parameter. The distribution will
/// be initialized with the default random number generator.
///
/// The shape (k, α) of the Gamma distribution. Range: α ≥ 0.
/// The rate or inverse scale (β) of the Gamma distribution. Range: β ≥ 0.
/// The random number generator which is used to draw random samples. Optional, can be null.
public static Gamma WithShapeRate(double shape, double rate, System.Random randomSource = null)
{
return new Gamma(shape, rate, randomSource);
}
///
/// A string representation of the distribution.
///
/// a string representation of the distribution.
public override string ToString()
{
return $"Gamma(α = {_shape}, β = {_rate})";
}
///
/// Tests whether the provided values are valid parameters for this distribution.
///
/// The shape (k, α) of the Gamma distribution. Range: α ≥ 0.
/// The rate or inverse scale (β) of the Gamma distribution. Range: β ≥ 0.
public static bool IsValidParameterSet(double shape, double rate)
{
return shape >= 0.0 && rate >= 0.0;
}
///
/// Gets or sets the shape (k, α) of the Gamma distribution. Range: α ≥ 0.
///
public double Shape => _shape;
///
/// Gets or sets the rate or inverse scale (β) of the Gamma distribution. Range: β ≥ 0.
///
public double Rate => _rate;
///
/// Gets or sets the scale (θ) of the Gamma distribution.
///
public double Scale => 1.0/_rate;
///
/// Gets or sets the random number generator which is used to draw random samples.
///
public System.Random RandomSource
{
get => _random;
set => _random = value ?? SystemRandomSource.Default;
}
///
/// Gets the mean of the Gamma distribution.
///
public double Mean
{
get
{
if (double.IsPositiveInfinity(_rate))
{
return _shape;
}
if (_rate == 0.0 && _shape == 0.0)
{
return double.NaN;
}
return _shape/_rate;
}
}
///
/// Gets the variance of the Gamma distribution.
///
public double Variance
{
get
{
if (double.IsPositiveInfinity(_rate))
{
return 0.0;
}
if (_rate == 0.0 && _shape == 0.0)
{
return double.NaN;
}
return _shape/(_rate*_rate);
}
}
///
/// Gets the standard deviation of the Gamma distribution.
///
public double StdDev
{
get
{
if (double.IsPositiveInfinity(_rate))
{
return 0.0;
}
if (_rate == 0.0 && _shape == 0.0)
{
return double.NaN;
}
return Math.Sqrt(_shape/(_rate*_rate));
}
}
///
/// Gets the entropy of the Gamma distribution.
///
public double Entropy
{
get
{
if (double.IsPositiveInfinity(_rate))
{
return 0.0;
}
if (_rate == 0.0 && _shape == 0.0)
{
return double.NaN;
}
return _shape - Math.Log(_rate) + SpecialFunctions.GammaLn(_shape) + ((1.0 - _shape)*SpecialFunctions.DiGamma(_shape));
}
}
///
/// Gets the skewness of the Gamma distribution.
///
public double Skewness
{
get
{
if (double.IsPositiveInfinity(_rate))
{
return 0.0;
}
if (_rate == 0.0 && _shape == 0.0)
{
return double.NaN;
}
return 2.0/Math.Sqrt(_shape);
}
}
///
/// Gets the mode of the Gamma distribution.
///
public double Mode
{
get
{
if (double.IsPositiveInfinity(_rate))
{
return _shape;
}
if (_rate == 0.0 && _shape == 0.0)
{
return double.NaN;
}
return (_shape - 1.0)/_rate;
}
}
///
/// Gets the median of the Gamma distribution.
///
public double Median => throw new NotSupportedException();
///
/// Gets the minimum of the Gamma distribution.
///
public double Minimum => 0.0;
///
/// Gets the maximum of the Gamma distribution.
///
public double Maximum => double.PositiveInfinity;
///
/// Computes the probability density of the distribution (PDF) at x, i.e. ∂P(X ≤ x)/∂x.
///
/// The location at which to compute the density.
/// the density at .
///
public double Density(double x)
{
return PDF(_shape, _rate, x);
}
///
/// Computes the log probability density of the distribution (lnPDF) at x, i.e. ln(∂P(X ≤ x)/∂x).
///
/// The location at which to compute the log density.
/// the log density at .
///
public double DensityLn(double x)
{
return PDFLn(_shape, _rate, x);
}
///
/// Computes the cumulative distribution (CDF) of the distribution at x, i.e. P(X ≤ x).
///
/// The location at which to compute the cumulative distribution function.
/// the cumulative distribution at location .
///
public double CumulativeDistribution(double x)
{
return CDF(_shape, _rate, x);
}
///
/// Computes the inverse of the cumulative distribution function (InvCDF) for the distribution
/// at the given probability. This is also known as the quantile or percent point function.
///
/// The location at which to compute the inverse cumulative density.
/// the inverse cumulative density at .
///
public double InverseCumulativeDistribution(double p)
{
return InvCDF(_shape, _rate, p);
}
///
/// Generates a sample from the Gamma distribution.
///
/// a sample from the distribution.
public double Sample()
{
return SampleUnchecked(_random, _shape, _rate);
}
///
/// Fills an array with samples generated from the distribution.
///
public void Samples(double[] values)
{
SamplesUnchecked(_random, values, _shape, _rate);
}
///
/// Generates a sequence of samples from the Gamma distribution.
///
/// a sequence of samples from the distribution.
public IEnumerable Samples()
{
return SamplesUnchecked(_random, _shape, _rate);
}
///
/// Sampling implementation based on:
/// "A Simple Method for Generating Gamma Variables" - Marsaglia & Tsang
/// ACM Transactions on Mathematical Software, Vol. 26, No. 3, September 2000, Pages 363–372.
/// This method performs no parameter checks.
///
/// The random number generator to use.
/// The shape (k, α) of the Gamma distribution. Range: α ≥ 0.
/// The rate or inverse scale (β) of the Gamma distribution. Range: β ≥ 0.
/// A sample from a Gamma distributed random variable.
internal static double SampleUnchecked(System.Random rnd, double shape, double rate)
{
if (double.IsPositiveInfinity(rate))
{
return shape;
}
var a = shape;
var alphafix = 1.0;
// Fix when alpha is less than one.
if (shape < 1.0)
{
a = shape + 1.0;
alphafix = Math.Pow(rnd.NextDouble(), 1.0/shape);
}
var d = a - (1.0/3.0);
var c = 1.0/Math.Sqrt(9.0*d);
while (true)
{
var x = Normal.Sample(rnd, 0.0, 1.0);
var v = 1.0 + (c*x);
while (v <= 0.0)
{
x = Normal.Sample(rnd, 0.0, 1.0);
v = 1.0 + (c*x);
}
v = v*v*v;
var u = rnd.NextDouble();
x = x*x;
if (u < 1.0 - (0.0331*x*x))
{
return alphafix*d*v/rate;
}
if (Math.Log(u) < (0.5*x) + (d*(1.0 - v + Math.Log(v))))
{
return alphafix*d*v/rate;
}
}
}
internal static void SamplesUnchecked(System.Random rnd, double[] values, double shape, double rate)
{
for (int i = 0; i < values.Length; i++)
{
values[i] = SampleUnchecked(rnd, shape, rate);
}
}
internal static IEnumerable SamplesUnchecked(System.Random rnd, double location, double scale)
{
while (true)
{
yield return SampleUnchecked(rnd, location, scale);
}
}
///
/// Computes the probability density of the distribution (PDF) at x, i.e. ∂P(X ≤ x)/∂x.
///
/// The shape (k, α) of the Gamma distribution. Range: α ≥ 0.
/// The rate or inverse scale (β) of the Gamma distribution. Range: β ≥ 0.
/// The location at which to compute the density.
/// the density at .
///
public static double PDF(double shape, double rate, double x)
{
if (shape < 0.0 || rate < 0.0)
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
if (double.IsPositiveInfinity(rate))
{
return x == shape ? double.PositiveInfinity : 0.0;
}
if (shape == 0.0 && rate == 0.0)
{
return 0.0;
}
if (shape == 1.0)
{
return rate*Math.Exp(-rate*x);
}
if (shape > 160.0)
{
return Math.Exp(PDFLn(shape, rate, x));
}
return Math.Pow(rate, shape)*Math.Pow(x, shape - 1.0)*Math.Exp(-rate*x)/SpecialFunctions.Gamma(shape);
}
///
/// Computes the log probability density of the distribution (lnPDF) at x, i.e. ln(∂P(X ≤ x)/∂x).
///
/// The shape (k, α) of the Gamma distribution. Range: α ≥ 0.
/// The rate or inverse scale (β) of the Gamma distribution. Range: β ≥ 0.
/// The location at which to compute the density.
/// the log density at .
///
public static double PDFLn(double shape, double rate, double x)
{
if (shape < 0.0 || rate < 0.0)
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
if (double.IsPositiveInfinity(rate))
{
return x == shape ? double.PositiveInfinity : double.NegativeInfinity;
}
if (shape == 0.0 && rate == 0.0)
{
return double.NegativeInfinity;
}
if (shape == 1.0)
{
return Math.Log(rate) - (rate*x);
}
return (shape*Math.Log(rate)) + ((shape - 1.0)*Math.Log(x)) - (rate*x) - SpecialFunctions.GammaLn(shape);
}
///
/// Computes the cumulative distribution (CDF) of the distribution at x, i.e. P(X ≤ x).
///
/// The location at which to compute the cumulative distribution function.
/// The shape (k, α) of the Gamma distribution. Range: α ≥ 0.
/// The rate or inverse scale (β) of the Gamma distribution. Range: β ≥ 0.
/// the cumulative distribution at location .
///
public static double CDF(double shape, double rate, double x)
{
if (shape < 0.0 || rate < 0.0)
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
if (double.IsPositiveInfinity(rate))
{
return x >= shape ? 1.0 : 0.0;
}
if (shape == 0.0 && rate == 0.0)
{
return 0.0;
}
return SpecialFunctions.GammaLowerRegularized(shape, x*rate);
}
///
/// Computes the inverse of the cumulative distribution function (InvCDF) for the distribution
/// at the given probability. This is also known as the quantile or percent point function.
///
/// The location at which to compute the inverse cumulative density.
/// The shape (k, α) of the Gamma distribution. Range: α ≥ 0.
/// The rate or inverse scale (β) of the Gamma distribution. Range: β ≥ 0.
/// the inverse cumulative density at .
///
public static double InvCDF(double shape, double rate, double p)
{
if (shape < 0.0 || rate < 0.0)
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
return SpecialFunctions.GammaLowerRegularizedInv(shape, p)/rate;
}
///
/// Generates a sample from the Gamma distribution.
///
/// The random number generator to use.
/// The shape (k, α) of the Gamma distribution. Range: α ≥ 0.
/// The rate or inverse scale (β) of the Gamma distribution. Range: β ≥ 0.
/// a sample from the distribution.
public static double Sample(System.Random rnd, double shape, double rate)
{
if (shape < 0.0 || rate < 0.0)
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
return SampleUnchecked(rnd, shape, rate);
}
///
/// Generates a sequence of samples from the Gamma distribution.
///
/// The random number generator to use.
/// The shape (k, α) of the Gamma distribution. Range: α ≥ 0.
/// The rate or inverse scale (β) of the Gamma distribution. Range: β ≥ 0.
/// a sequence of samples from the distribution.
public static IEnumerable Samples(System.Random rnd, double shape, double rate)
{
if (shape < 0.0 || rate < 0.0)
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
return SamplesUnchecked(rnd, shape, rate);
}
///
/// Fills an array with samples generated from the distribution.
///
/// The random number generator to use.
/// The array to fill with the samples.
/// The shape (k, α) of the Gamma distribution. Range: α ≥ 0.
/// The rate or inverse scale (β) of the Gamma distribution. Range: β ≥ 0.
/// a sequence of samples from the distribution.
public static void Samples(System.Random rnd, double[] values, double shape, double rate)
{
if (shape < 0.0 || rate < 0.0)
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
SamplesUnchecked(rnd, values, shape, rate);
}
///
/// Generates a sample from the Gamma distribution.
///
/// The shape (k, α) of the Gamma distribution. Range: α ≥ 0.
/// The rate or inverse scale (β) of the Gamma distribution. Range: β ≥ 0.
/// a sample from the distribution.
public static double Sample(double shape, double rate)
{
if (shape < 0.0 || rate < 0.0)
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
return SampleUnchecked(SystemRandomSource.Default, shape, rate);
}
///
/// Generates a sequence of samples from the Gamma distribution.
///
/// The shape (k, α) of the Gamma distribution. Range: α ≥ 0.
/// The rate or inverse scale (β) of the Gamma distribution. Range: β ≥ 0.
/// a sequence of samples from the distribution.
public static IEnumerable Samples(double shape, double rate)
{
if (shape < 0.0 || rate < 0.0)
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
return SamplesUnchecked(SystemRandomSource.Default, shape, rate);
}
///
/// Fills an array with samples generated from the distribution.
///
/// The array to fill with the samples.
/// The shape (k, α) of the Gamma distribution. Range: α ≥ 0.
/// The rate or inverse scale (β) of the Gamma distribution. Range: β ≥ 0.
/// a sequence of samples from the distribution.
public static void Samples(double[] values, double shape, double rate)
{
if (shape < 0.0 || rate < 0.0)
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
SamplesUnchecked(SystemRandomSource.Default, values, shape, rate);
}
}
}