// // Math.NET Numerics, part of the Math.NET Project // http://numerics.mathdotnet.com // http://github.com/mathnet/mathnet-numerics // // Copyright (c) 2009-2015 Math.NET // // Permission is hereby granted, free of charge, to any person // obtaining a copy of this software and associated documentation // files (the "Software"), to deal in the Software without // restriction, including without limitation the rights to use, // copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the // Software is furnished to do so, subject to the following // conditions: // // The above copyright notice and this permission notice shall be // included in all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES // OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT // HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, // WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR // OTHER DEALINGS IN THE SOFTWARE. // using System; using System.Collections.Generic; using IStation.Numerics.Random; using IStation.Numerics.Statistics; namespace IStation.Numerics.Distributions { /// /// Continuous Univariate Normal distribution, also known as Gaussian distribution. /// For details about this distribution, see /// Wikipedia - Normal distribution. /// public class Normal : IContinuousDistribution { System.Random _random; readonly double _mean; readonly double _stdDev; /// /// Initializes a new instance of the Normal class. This is a normal distribution with mean 0.0 /// and standard deviation 1.0. The distribution will /// be initialized with the default random number generator. /// public Normal() : this(0.0, 1.0) { } /// /// Initializes a new instance of the Normal class. This is a normal distribution with mean 0.0 /// and standard deviation 1.0. The distribution will /// be initialized with the default random number generator. /// /// The random number generator which is used to draw random samples. public Normal(System.Random randomSource) : this(0.0, 1.0, randomSource) { } /// /// Initializes a new instance of the Normal class with a particular mean and standard deviation. The distribution will /// be initialized with the default random number generator. /// /// The mean (μ) of the normal distribution. /// The standard deviation (σ) of the normal distribution. Range: σ ≥ 0. public Normal(double mean, double stddev) { if (!IsValidParameterSet(mean, stddev)) { throw new ArgumentException("Invalid parametrization for the distribution."); } _random = SystemRandomSource.Default; _mean = mean; _stdDev = stddev; } /// /// Initializes a new instance of the Normal class with a particular mean and standard deviation. The distribution will /// be initialized with the default random number generator. /// /// The mean (μ) of the normal distribution. /// The standard deviation (σ) of the normal distribution. Range: σ ≥ 0. /// The random number generator which is used to draw random samples. public Normal(double mean, double stddev, System.Random randomSource) { if (!IsValidParameterSet(mean, stddev)) { throw new ArgumentException("Invalid parametrization for the distribution."); } _random = randomSource ?? SystemRandomSource.Default; _mean = mean; _stdDev = stddev; } /// /// Constructs a normal distribution from a mean and standard deviation. /// /// The mean (μ) of the normal distribution. /// The standard deviation (σ) of the normal distribution. Range: σ ≥ 0. /// The random number generator which is used to draw random samples. Optional, can be null. /// a normal distribution. public static Normal WithMeanStdDev(double mean, double stddev, System.Random randomSource = null) { return new Normal(mean, stddev, randomSource); } /// /// Constructs a normal distribution from a mean and variance. /// /// The mean (μ) of the normal distribution. /// The variance (σ^2) of the normal distribution. /// The random number generator which is used to draw random samples. Optional, can be null. /// A normal distribution. public static Normal WithMeanVariance(double mean, double var, System.Random randomSource = null) { return new Normal(mean, Math.Sqrt(var), randomSource); } /// /// Constructs a normal distribution from a mean and precision. /// /// The mean (μ) of the normal distribution. /// The precision of the normal distribution. /// The random number generator which is used to draw random samples. Optional, can be null. /// A normal distribution. public static Normal WithMeanPrecision(double mean, double precision, System.Random randomSource = null) { return new Normal(mean, 1.0/Math.Sqrt(precision), randomSource); } /// /// Estimates the normal distribution parameters from sample data with maximum-likelihood. /// /// The samples to estimate the distribution parameters from. /// The random number generator which is used to draw random samples. Optional, can be null. /// A normal distribution. /// MATLAB: normfit public static Normal Estimate(IEnumerable samples, System.Random randomSource = null) { var meanStdDev = samples.MeanStandardDeviation(); return new Normal(meanStdDev.Item1, meanStdDev.Item2, randomSource); } /// /// A string representation of the distribution. /// /// a string representation of the distribution. public override string ToString() { return $"Normal(μ = {_mean}, σ = {_stdDev})"; } /// /// Tests whether the provided values are valid parameters for this distribution. /// /// The mean (μ) of the normal distribution. /// The standard deviation (σ) of the normal distribution. Range: σ ≥ 0. public static bool IsValidParameterSet(double mean, double stddev) { return stddev >= 0.0 && !double.IsNaN(mean); } /// /// Gets the mean (μ) of the normal distribution. /// public double Mean => _mean; /// /// Gets the standard deviation (σ) of the normal distribution. Range: σ ≥ 0. /// public double StdDev => _stdDev; /// /// Gets the variance of the normal distribution. /// public double Variance => _stdDev*_stdDev; /// /// Gets the precision of the normal distribution. /// public double Precision => 1.0/(_stdDev*_stdDev); /// /// Gets the random number generator which is used to draw random samples. /// public System.Random RandomSource { get => _random; set => _random = value ?? SystemRandomSource.Default; } /// /// Gets the entropy of the normal distribution. /// public double Entropy => Math.Log(_stdDev) + Constants.LogSqrt2PiE; /// /// Gets the skewness of the normal distribution. /// public double Skewness => 0.0; /// /// Gets the mode of the normal distribution. /// public double Mode => _mean; /// /// Gets the median of the normal distribution. /// public double Median => _mean; /// /// Gets the minimum of the normal distribution. /// public double Minimum => double.NegativeInfinity; /// /// Gets the maximum of the normal distribution. /// public double Maximum => double.PositiveInfinity; /// /// Computes the probability density of the distribution (PDF) at x, i.e. ∂P(X ≤ x)/∂x. /// /// The location at which to compute the density. /// the density at . /// public double Density(double x) { var d = (x - _mean)/_stdDev; return Math.Exp(-0.5*d*d)/(Constants.Sqrt2Pi*_stdDev); } /// /// Computes the log probability density of the distribution (lnPDF) at x, i.e. ln(∂P(X ≤ x)/∂x). /// /// The location at which to compute the log density. /// the log density at . /// public double DensityLn(double x) { var d = (x - _mean)/_stdDev; return (-0.5*d*d) - Math.Log(_stdDev) - Constants.LogSqrt2Pi; } /// /// Computes the cumulative distribution (CDF) of the distribution at x, i.e. P(X ≤ x). /// /// The location at which to compute the cumulative distribution function. /// the cumulative distribution at location . /// public double CumulativeDistribution(double x) { return 0.5*SpecialFunctions.Erfc((_mean - x)/(_stdDev*Constants.Sqrt2)); } /// /// Computes the inverse of the cumulative distribution function (InvCDF) for the distribution /// at the given probability. This is also known as the quantile or percent point function. /// /// The location at which to compute the inverse cumulative density. /// the inverse cumulative density at . /// public double InverseCumulativeDistribution(double p) { return _mean - (_stdDev*Constants.Sqrt2*SpecialFunctions.ErfcInv(2.0*p)); } /// /// Generates a sample from the normal distribution using the Box-Muller algorithm. /// /// a sample from the distribution. public double Sample() { return SampleUnchecked(_random, _mean, _stdDev); } /// /// Fills an array with samples generated from the distribution. /// public void Samples(double[] values) { SamplesUnchecked(_random, values, _mean, _stdDev); } /// /// Generates a sequence of samples from the normal distribution using the Box-Muller algorithm. /// /// a sequence of samples from the distribution. public IEnumerable Samples() { return SamplesUnchecked(_random, _mean, _stdDev); } internal static double SampleUnchecked(System.Random rnd, double mean, double stddev) { double x, y; while (!PolarTransform(rnd.NextDouble(), rnd.NextDouble(), out x, out y)) { } return mean + (stddev*x); } internal static IEnumerable SamplesUnchecked(System.Random rnd, double mean, double stddev) { while (true) { double x, y; if (!PolarTransform(rnd.NextDouble(), rnd.NextDouble(), out x, out y)) { continue; } yield return mean + (stddev*x); yield return mean + (stddev*y); } } internal static void SamplesUnchecked(System.Random rnd, double[] values, double mean, double stddev) { if (values.Length == 0) { return; } // Since we only accept points within the unit circle // we need to generate roughly 4/pi=1.27 times the numbers needed. int n = (int)Math.Ceiling(values.Length*4*Constants.InvPi); if (n.IsOdd()) { n++; } var uniform = rnd.NextDoubles(n); // Polar transform double x, y; int index = 0; for (int i = 0; i < uniform.Length && index < values.Length; i += 2) { if (!PolarTransform(uniform[i], uniform[i + 1], out x, out y)) { continue; } values[index++] = mean + stddev*x; if (index == values.Length) { return; } values[index++] = mean + stddev*y; if (index == values.Length) { return; } } // remaining, if any while (index < values.Length) { if (!PolarTransform(rnd.NextDouble(), rnd.NextDouble(), out x, out y)) { continue; } values[index++] = mean + stddev*x; if (index == values.Length) { return; } values[index++] = mean + stddev*y; if (index == values.Length) { return; } } } static bool PolarTransform(double a, double b, out double x, out double y) { var v1 = (2.0*a) - 1.0; var v2 = (2.0*b) - 1.0; var r = (v1*v1) + (v2*v2); if (r >= 1.0 || r == 0.0) { x = 0; y = 0; return false; } var fac = Math.Sqrt(-2.0*Math.Log(r)/r); x = v1*fac; y = v2*fac; return true; } /// /// Computes the probability density of the distribution (PDF) at x, i.e. ∂P(X ≤ x)/∂x. /// /// The mean (μ) of the normal distribution. /// The standard deviation (σ) of the normal distribution. Range: σ ≥ 0. /// The location at which to compute the density. /// the density at . /// /// MATLAB: normpdf public static double PDF(double mean, double stddev, double x) { if (stddev < 0.0) { throw new ArgumentException("Invalid parametrization for the distribution."); } var d = (x - mean)/stddev; return Math.Exp(-0.5*d*d)/(Constants.Sqrt2Pi*stddev); } /// /// Computes the log probability density of the distribution (lnPDF) at x, i.e. ln(∂P(X ≤ x)/∂x). /// /// The mean (μ) of the normal distribution. /// The standard deviation (σ) of the normal distribution. Range: σ ≥ 0. /// The location at which to compute the density. /// the log density at . /// public static double PDFLn(double mean, double stddev, double x) { if (stddev < 0.0) { throw new ArgumentException("Invalid parametrization for the distribution."); } var d = (x - mean)/stddev; return (-0.5*d*d) - Math.Log(stddev) - Constants.LogSqrt2Pi; } /// /// Computes the cumulative distribution (CDF) of the distribution at x, i.e. P(X ≤ x). /// /// The location at which to compute the cumulative distribution function. /// The mean (μ) of the normal distribution. /// The standard deviation (σ) of the normal distribution. Range: σ ≥ 0. /// the cumulative distribution at location . /// /// MATLAB: normcdf public static double CDF(double mean, double stddev, double x) { if (stddev < 0.0) { throw new ArgumentException("Invalid parametrization for the distribution."); } return 0.5*SpecialFunctions.Erfc((mean - x)/(stddev*Constants.Sqrt2)); } /// /// Computes the inverse of the cumulative distribution function (InvCDF) for the distribution /// at the given probability. This is also known as the quantile or percent point function. /// /// The location at which to compute the inverse cumulative density. /// The mean (μ) of the normal distribution. /// The standard deviation (σ) of the normal distribution. Range: σ ≥ 0. /// the inverse cumulative density at . /// /// MATLAB: norminv public static double InvCDF(double mean, double stddev, double p) { if (stddev < 0.0) { throw new ArgumentException("Invalid parametrization for the distribution."); } return mean - (stddev*Constants.Sqrt2*SpecialFunctions.ErfcInv(2.0*p)); } /// /// Generates a sample from the normal distribution using the Box-Muller algorithm. /// /// The random number generator to use. /// The mean (μ) of the normal distribution. /// The standard deviation (σ) of the normal distribution. Range: σ ≥ 0. /// a sample from the distribution. public static double Sample(System.Random rnd, double mean, double stddev) { if (stddev < 0.0) { throw new ArgumentException("Invalid parametrization for the distribution."); } return SampleUnchecked(rnd, mean, stddev); } /// /// Generates a sequence of samples from the normal distribution using the Box-Muller algorithm. /// /// The random number generator to use. /// The mean (μ) of the normal distribution. /// The standard deviation (σ) of the normal distribution. Range: σ ≥ 0. /// a sequence of samples from the distribution. public static IEnumerable Samples(System.Random rnd, double mean, double stddev) { if (stddev < 0.0) { throw new ArgumentException("Invalid parametrization for the distribution."); } return SamplesUnchecked(rnd, mean, stddev); } /// /// Fills an array with samples generated from the distribution. /// /// The random number generator to use. /// The array to fill with the samples. /// The mean (μ) of the normal distribution. /// The standard deviation (σ) of the normal distribution. Range: σ ≥ 0. /// a sequence of samples from the distribution. public static void Samples(System.Random rnd, double[] values, double mean, double stddev) { if (stddev < 0.0) { throw new ArgumentException("Invalid parametrization for the distribution."); } SamplesUnchecked(rnd, values, mean, stddev); } /// /// Generates a sample from the normal distribution using the Box-Muller algorithm. /// /// The mean (μ) of the normal distribution. /// The standard deviation (σ) of the normal distribution. Range: σ ≥ 0. /// a sample from the distribution. public static double Sample(double mean, double stddev) { if (stddev < 0.0) { throw new ArgumentException("Invalid parametrization for the distribution."); } return SampleUnchecked(SystemRandomSource.Default, mean, stddev); } /// /// Generates a sequence of samples from the normal distribution using the Box-Muller algorithm. /// /// The mean (μ) of the normal distribution. /// The standard deviation (σ) of the normal distribution. Range: σ ≥ 0. /// a sequence of samples from the distribution. public static IEnumerable Samples(double mean, double stddev) { if (stddev < 0.0) { throw new ArgumentException("Invalid parametrization for the distribution."); } return SamplesUnchecked(SystemRandomSource.Default, mean, stddev); } /// /// Fills an array with samples generated from the distribution. /// /// The array to fill with the samples. /// The mean (μ) of the normal distribution. /// The standard deviation (σ) of the normal distribution. Range: σ ≥ 0. /// a sequence of samples from the distribution. public static void Samples(double[] values, double mean, double stddev) { if (stddev < 0.0) { throw new ArgumentException("Invalid parametrization for the distribution."); } SamplesUnchecked(SystemRandomSource.Default, values, mean, stddev); } } }