//
// Math.NET Numerics, part of the Math.NET Project
// http://numerics.mathdotnet.com
// http://github.com/mathnet/mathnet-numerics
//
// Copyright (c) 2009-2013 Math.NET
//
// Permission is hereby granted, free of charge, to any person
// obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without
// restriction, including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following
// conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
//
using System;
using System.Collections.Generic;
using IStation.Numerics.Random;
namespace IStation.Numerics.Distributions
{
///
/// This structure represents the type over which the distribution
/// is defined.
///
public struct MeanPrecisionPair
{
///
/// Initializes a new instance of the struct.
///
/// The mean of the pair.
/// The precision of the pair.
public MeanPrecisionPair(double m, double p)
{
Mean = m;
Precision = p;
}
///
/// Gets or sets the mean of the pair.
///
public double Mean { get; set; }
///
/// Gets or sets the precision of the pair.
///
public double Precision { get; set; }
}
///
/// Multivariate Normal-Gamma Distribution.
/// The distribution is the conjugate prior distribution for the
/// distribution. It specifies a prior over the mean and precision of the distribution.
/// It is parameterized by four numbers: the mean location, the mean scale, the precision shape and the
/// precision inverse scale.
/// The distribution NG(mu, tau | mloc,mscale,psscale,pinvscale) = Normal(mu | mloc, 1/(mscale*tau)) * Gamma(tau | psscale,pinvscale).
/// The following degenerate cases are special: when the precision is known,
/// the precision shape will encode the value of the precision while the precision inverse scale is positive
/// infinity. When the mean is known, the mean location will encode the value of the mean while the scale
/// will be positive infinity. A completely degenerate NormalGamma distribution with known mean and precision is possible as well.
/// Wikipedia - Normal-Gamma distribution.
///
public class NormalGamma : IDistribution
{
System.Random _random;
readonly double _meanLocation;
readonly double _meanScale;
readonly double _precisionShape;
readonly double _precisionInvScale;
///
/// Initializes a new instance of the class.
///
/// The location of the mean.
/// The scale of the mean.
/// The shape of the precision.
/// The inverse scale of the precision.
public NormalGamma(double meanLocation, double meanScale, double precisionShape, double precisionInverseScale)
{
if (Control.CheckDistributionParameters && !IsValidParameterSet(meanLocation, meanScale, precisionShape, precisionInverseScale))
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
_random = SystemRandomSource.Default;
_meanLocation = meanLocation;
_meanScale = meanScale;
_precisionShape = precisionShape;
_precisionInvScale = precisionInverseScale;
}
///
/// Initializes a new instance of the class.
///
/// The location of the mean.
/// The scale of the mean.
/// The shape of the precision.
/// The inverse scale of the precision.
/// The random number generator which is used to draw random samples.
public NormalGamma(double meanLocation, double meanScale, double precisionShape, double precisionInverseScale, System.Random randomSource)
{
if (Control.CheckDistributionParameters && !IsValidParameterSet(meanLocation, meanScale, precisionShape, precisionInverseScale))
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
_random = randomSource ?? SystemRandomSource.Default;
_meanLocation = meanLocation;
_meanScale = meanScale;
_precisionShape = precisionShape;
_precisionInvScale = precisionInverseScale;
}
///
/// A string representation of the distribution.
///
/// a string representation of the distribution.
public override string ToString()
{
return $"NormalGamma(Mean Location = {_meanLocation}, Mean Scale = {_meanScale}, Precision Shape = {_precisionShape}, Precision Inverse Scale = {_precisionInvScale})";
}
///
/// Tests whether the provided values are valid parameters for this distribution.
///
/// The location of the mean.
/// The scale of the mean.
/// The shape of the precision.
/// The inverse scale of the precision.
public static bool IsValidParameterSet(double meanLocation, double meanScale, double precShape, double precInvScale)
{
return meanScale > 0.0 && precShape > 0.0 && precInvScale > 0.0 && !double.IsNaN(meanLocation);
}
///
/// Gets the location of the mean.
///
public double MeanLocation => _meanLocation;
///
/// Gets the scale of the mean.
///
public double MeanScale => _meanScale;
///
/// Gets the shape of the precision.
///
public double PrecisionShape => _precisionShape;
///
/// Gets the inverse scale of the precision.
///
public double PrecisionInverseScale => _precisionInvScale;
///
/// Gets or sets the random number generator which is used to draw random samples.
///
public System.Random RandomSource
{
get => _random;
set => _random = value ?? SystemRandomSource.Default;
}
///
/// Returns the marginal distribution for the mean of the NormalGamma distribution.
///
/// the marginal distribution for the mean of the NormalGamma distribution.
public StudentT MeanMarginal()
{
if (double.IsPositiveInfinity(_precisionInvScale))
{
return new StudentT(_meanLocation, 1.0/(_meanScale*_precisionShape), double.PositiveInfinity);
}
return new StudentT(_meanLocation, Math.Sqrt(_precisionInvScale/(_meanScale*_precisionShape)), 2.0*_precisionShape);
}
///
/// Returns the marginal distribution for the precision of the distribution.
///
/// The marginal distribution for the precision of the distribution/
public Gamma PrecisionMarginal()
{
return new Gamma(_precisionShape, _precisionInvScale);
}
///
/// Gets the mean of the distribution.
///
/// The mean of the distribution.
public MeanPrecisionPair Mean => double.IsPositiveInfinity(_precisionInvScale) ? new MeanPrecisionPair(_meanLocation, _precisionShape) : new MeanPrecisionPair(_meanLocation, _precisionShape/_precisionInvScale);
///
/// Gets the variance of the distribution.
///
/// The mean of the distribution.
public MeanPrecisionPair Variance => new MeanPrecisionPair(_precisionInvScale/(_meanScale*(_precisionShape - 1)), _precisionShape/Math.Sqrt(_precisionInvScale));
///
/// Evaluates the probability density function for a NormalGamma distribution.
///
/// The mean/precision pair of the distribution
/// Density value
public double Density(MeanPrecisionPair mp)
{
return Density(mp.Mean, mp.Precision);
}
///
/// Evaluates the probability density function for a NormalGamma distribution.
///
/// The mean of the distribution
/// The precision of the distribution
/// Density value
public double Density(double mean, double prec)
{
if (double.IsPositiveInfinity(_precisionInvScale) && _meanScale == 0.0)
{
throw new NotSupportedException();
}
if (double.IsPositiveInfinity(_precisionInvScale))
{
throw new NotSupportedException();
}
if (_meanScale <= 0.0)
{
throw new NotSupportedException();
}
if (_precisionShape > 160.0)
{
return Math.Exp(DensityLn(mean, prec));
}
// double e = -0.5 * prec * (mean - _meanLocation) * (mean - _meanLocation) - prec * _precisionInvScale;
// return Math.Pow(prec * _precisionInvScale, _precisionShape) * Math.Exp(e) / (Constants.Sqrt2Pi * Math.Sqrt(prec) * SpecialFunctions.Gamma(_precisionShape));
double e = -(0.5*prec*_meanScale*(mean - _meanLocation)*(mean - _meanLocation)) - (prec*_precisionInvScale);
return Math.Pow(prec*_precisionInvScale, _precisionShape)*Math.Exp(e)*Math.Sqrt(_meanScale)
/(Constants.Sqrt2Pi*Math.Sqrt(prec)*SpecialFunctions.Gamma(_precisionShape));
}
///
/// Evaluates the log probability density function for a NormalGamma distribution.
///
/// The mean/precision pair of the distribution
/// The log of the density value
public double DensityLn(MeanPrecisionPair mp)
{
return DensityLn(mp.Mean, mp.Precision);
}
///
/// Evaluates the log probability density function for a NormalGamma distribution.
///
/// The mean of the distribution
/// The precision of the distribution
/// The log of the density value
public double DensityLn(double mean, double prec)
{
if (double.IsPositiveInfinity(_precisionInvScale) && _meanScale == 0.0)
{
throw new NotSupportedException();
}
if (double.IsPositiveInfinity(_precisionInvScale))
{
throw new NotSupportedException();
}
if (_meanScale <= 0.0)
{
throw new NotSupportedException();
}
// double e = -0.5 * prec * (mean - _meanLocation) * (mean - _meanLocation) - prec * _precisionInvScale;
// return (_precisionShape - 0.5) * Math.Log(prec) + _precisionShape * Math.Log(_precisionInvScale) + e - Constants.LogSqrt2Pi - SpecialFunctions.GammaLn(_precisionShape);
double e = -(0.5*prec*_meanScale*(mean - _meanLocation)*(mean - _meanLocation)) - (prec*_precisionInvScale);
return ((_precisionShape - 0.5)*Math.Log(prec)) + (_precisionShape*Math.Log(_precisionInvScale)) - (0.5*Math.Log(_meanScale)) + e - Constants.LogSqrt2Pi - SpecialFunctions.GammaLn(_precisionShape);
}
///
/// Generates a sample from the NormalGamma distribution.
///
/// a sample from the distribution.
public MeanPrecisionPair Sample()
{
return Sample(_random, _meanLocation, _meanScale, _precisionShape, _precisionInvScale);
}
///
/// Generates a sequence of samples from the NormalGamma distribution
///
/// a sequence of samples from the distribution.
public IEnumerable Samples()
{
while (true)
{
yield return Sample(_random, _meanLocation, _meanScale, _precisionShape, _precisionInvScale);
}
}
///
/// Generates a sample from the NormalGamma distribution.
///
/// The random number generator to use.
/// The location of the mean.
/// The scale of the mean.
/// The shape of the precision.
/// The inverse scale of the precision.
/// a sample from the distribution.
public static MeanPrecisionPair Sample(System.Random rnd, double meanLocation, double meanScale, double precisionShape, double precisionInverseScale)
{
if (Control.CheckDistributionParameters && !IsValidParameterSet(meanLocation, meanScale, precisionShape, precisionInverseScale))
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
var mp = new MeanPrecisionPair();
// Sample the precision.
mp.Precision = double.IsPositiveInfinity(precisionInverseScale) ? precisionShape : Gamma.Sample(rnd, precisionShape, precisionInverseScale);
// Sample the mean.
mp.Mean = meanScale == 0.0 ? meanLocation : Normal.Sample(rnd, meanLocation, Math.Sqrt(1.0/(meanScale*mp.Precision)));
return mp;
}
///
/// Generates a sequence of samples from the NormalGamma distribution
///
/// The random number generator to use.
/// The location of the mean.
/// The scale of the mean.
/// The shape of the precision.
/// The inverse scale of the precision.
/// a sequence of samples from the distribution.
public static IEnumerable Samples(System.Random rnd, double meanLocation, double meanScale, double precisionShape, double precisionInvScale)
{
if (Control.CheckDistributionParameters && !IsValidParameterSet(meanLocation, meanScale, precisionShape, precisionInvScale))
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
while (true)
{
var mp = new MeanPrecisionPair();
// Sample the precision.
mp.Precision = double.IsPositiveInfinity(precisionInvScale) ? precisionShape : Gamma.Sample(rnd, precisionShape, precisionInvScale);
// Sample the mean.
mp.Mean = meanScale == 0.0 ? meanLocation : Normal.Sample(rnd, meanLocation, Math.Sqrt(1.0/(meanScale*mp.Precision)));
yield return mp;
}
}
}
}