// // Math.NET Numerics, part of the Math.NET Project // http://numerics.mathdotnet.com // http://github.com/mathnet/mathnet-numerics // // Copyright (c) 2009-2017 Math.NET // // Permission is hereby granted, free of charge, to any person // obtaining a copy of this software and associated documentation // files (the "Software"), to deal in the Software without // restriction, including without limitation the rights to use, // copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the // Software is furnished to do so, subject to the following // conditions: // // The above copyright notice and this permission notice shall be // included in all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES // OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT // HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, // WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR // OTHER DEALINGS IN THE SOFTWARE. // using System; using IStation.Numerics.LinearAlgebra; using IStation.Numerics.Optimization; namespace IStation.Numerics { public static class FindMinimum { /// /// Find value x that minimizes the scalar function f(x), constrained within bounds, using the Golden Section algorithm. /// For more options and diagnostics consider to use directly. /// public static double OfScalarFunctionConstrained(Func function, double lowerBound, double upperBound, double tolerance=1e-5, int maxIterations=1000) { var objective = ObjectiveFunction.ScalarValue(function); var result = GoldenSectionMinimizer.Minimum(objective, lowerBound, upperBound, tolerance, maxIterations); return result.MinimizingPoint; } /// /// Find vector x that minimizes the function f(x) using the Nelder-Mead Simplex algorithm. /// For more options and diagnostics consider to use directly. /// public static double OfScalarFunction(Func function, double initialGuess, double tolerance = 1e-8, int maxIterations = 1000) { var objective = ObjectiveFunction.Value(v => function(v[0])); var result = NelderMeadSimplex.Minimum(objective, CreateVector.Dense(new[] { initialGuess }), tolerance, maxIterations); return result.MinimizingPoint[0]; } /// /// Find vector x that minimizes the function f(x) using the Nelder-Mead Simplex algorithm. /// For more options and diagnostics consider to use directly. /// public static Tuple OfFunction(Func function, double initialGuess0, double initialGuess1, double tolerance = 1e-8, int maxIterations = 1000) { var objective = ObjectiveFunction.Value(v => function(v[0], v[1])); var result = NelderMeadSimplex.Minimum(objective, CreateVector.Dense(new[] { initialGuess0, initialGuess1 }), tolerance, maxIterations); return Tuple.Create(result.MinimizingPoint[0], result.MinimizingPoint[1]); } /// /// Find vector x that minimizes the function f(x) using the Nelder-Mead Simplex algorithm. /// For more options and diagnostics consider to use directly. /// public static Tuple OfFunction(Func function, double initialGuess0, double initialGuess1, double initialGuess2, double tolerance = 1e-8, int maxIterations = 1000) { var objective = ObjectiveFunction.Value(v => function(v[0], v[1], v[2])); var result = NelderMeadSimplex.Minimum(objective, CreateVector.Dense(new[] { initialGuess0, initialGuess1, initialGuess2 }), tolerance, maxIterations); return Tuple.Create(result.MinimizingPoint[0], result.MinimizingPoint[1], result.MinimizingPoint[2]); } /// /// Find vector x that minimizes the function f(x) using the Nelder-Mead Simplex algorithm. /// For more options and diagnostics consider to use directly. /// public static Vector OfFunction(Func, double> function, Vector initialGuess, double tolerance=1e-8, int maxIterations=1000) { var objective = ObjectiveFunction.Value(function); var result = NelderMeadSimplex.Minimum(objective, initialGuess, tolerance, maxIterations); return result.MinimizingPoint; } /// /// Find vector x that minimizes the function f(x), constrained within bounds, using the Broyden–Fletcher–Goldfarb–Shanno Bounded (BFGS-B) algorithm. /// The missing gradient is evaluated numerically (forward difference). /// For more options and diagnostics consider to use directly. /// public static Vector OfFunctionConstrained(Func, double> function, Vector lowerBound, Vector upperBound, Vector initialGuess, double gradientTolerance=1e-5, double parameterTolerance=1e-5, double functionProgressTolerance=1e-5, int maxIterations=1000) { var objective = ObjectiveFunction.Value(function); var objectiveWithGradient = new Optimization.ObjectiveFunctions.ForwardDifferenceGradientObjectiveFunction(objective, lowerBound, upperBound); var algorithm = new BfgsBMinimizer(gradientTolerance, parameterTolerance, functionProgressTolerance, maxIterations); var result = algorithm.FindMinimum(objectiveWithGradient, lowerBound, upperBound, initialGuess); return result.MinimizingPoint; } /// /// Find vector x that minimizes the function f(x) using the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm. /// For more options and diagnostics consider to use directly. /// An alternative routine using conjugate gradients (CG) is available in . /// public static Vector OfFunctionGradient(Func, double> function, Func, Vector> gradient, Vector initialGuess, double gradientTolerance=1e-5, double parameterTolerance=1e-5, double functionProgressTolerance=1e-5, int maxIterations=1000) { var objective = ObjectiveFunction.Gradient(function, gradient); var algorithm = new BfgsMinimizer(gradientTolerance, parameterTolerance, functionProgressTolerance, maxIterations); var result = algorithm.FindMinimum(objective, initialGuess); return result.MinimizingPoint; } /// /// Find vector x that minimizes the function f(x) using the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm. /// For more options and diagnostics consider to use directly. /// An alternative routine using conjugate gradients (CG) is available in . /// public static Vector OfFunctionGradient(Func, Tuple>> functionGradient, Vector initialGuess, double gradientTolerance=1e-5, double parameterTolerance=1e-5, double functionProgressTolerance=1e-5, int maxIterations=1000) { var objective = ObjectiveFunction.Gradient(functionGradient); var algorithm = new BfgsMinimizer(gradientTolerance, parameterTolerance, functionProgressTolerance, maxIterations); var result = algorithm.FindMinimum(objective, initialGuess); return result.MinimizingPoint; } /// /// Find vector x that minimizes the function f(x), constrained within bounds, using the Broyden–Fletcher–Goldfarb–Shanno Bounded (BFGS-B) algorithm. /// For more options and diagnostics consider to use directly. /// public static Vector OfFunctionGradientConstrained(Func, double> function, Func, Vector> gradient, Vector lowerBound, Vector upperBound, Vector initialGuess, double gradientTolerance=1e-5, double parameterTolerance=1e-5, double functionProgressTolerance=1e-5, int maxIterations=1000) { var objective = ObjectiveFunction.Gradient(function, gradient); var algorithm = new BfgsBMinimizer(gradientTolerance, parameterTolerance, functionProgressTolerance, maxIterations); var result = algorithm.FindMinimum(objective, lowerBound, upperBound, initialGuess); return result.MinimizingPoint; } /// /// Find vector x that minimizes the function f(x), constrained within bounds, using the Broyden–Fletcher–Goldfarb–Shanno Bounded (BFGS-B) algorithm. /// For more options and diagnostics consider to use directly. /// public static Vector OfFunctionGradientConstrained(Func, Tuple>> functionGradient, Vector lowerBound, Vector upperBound, Vector initialGuess, double gradientTolerance=1e-5, double parameterTolerance=1e-5, double functionProgressTolerance=1e-5, int maxIterations=1000) { var objective = ObjectiveFunction.Gradient(functionGradient); var algorithm = new BfgsBMinimizer(gradientTolerance, parameterTolerance, functionProgressTolerance, maxIterations); var result = algorithm.FindMinimum(objective, lowerBound, upperBound, initialGuess); return result.MinimizingPoint; } /// /// Find vector x that minimizes the function f(x) using the Newton algorithm. /// For more options and diagnostics consider to use directly. /// public static Vector OfFunctionGradientHessian(Func, double> function, Func, Vector> gradient, Func, Matrix> hessian, Vector initialGuess, double gradientTolerance=1e-8, int maxIterations=1000) { var objective = ObjectiveFunction.GradientHessian(function, gradient, hessian); var result = NewtonMinimizer.Minimum(objective, initialGuess, gradientTolerance, maxIterations); return result.MinimizingPoint; } /// /// Find vector x that minimizes the function f(x) using the Newton algorithm. /// For more options and diagnostics consider to use directly. /// public static Vector OfFunctionGradientHessian(Func, Tuple, Matrix>> functionGradientHessian, Vector initialGuess, double gradientTolerance=1e-8, int maxIterations=1000) { var objective = ObjectiveFunction.GradientHessian(functionGradientHessian); var result = NewtonMinimizer.Minimum(objective, initialGuess, gradientTolerance, maxIterations); return result.MinimizingPoint; } } }