//
// Math.NET Numerics, part of the Math.NET Project
// http://numerics.mathdotnet.com
// http://github.com/mathnet/mathnet-numerics
//
// Copyright (c) 2009-2017 Math.NET
//
// Permission is hereby granted, free of charge, to any person
// obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without
// restriction, including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following
// conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
//
using System;
using IStation.Numerics.LinearAlgebra;
using IStation.Numerics.Optimization;
namespace IStation.Numerics
{
public static class FindMinimum
{
///
/// Find value x that minimizes the scalar function f(x), constrained within bounds, using the Golden Section algorithm.
/// For more options and diagnostics consider to use directly.
///
public static double OfScalarFunctionConstrained(Func function, double lowerBound, double upperBound, double tolerance=1e-5, int maxIterations=1000)
{
var objective = ObjectiveFunction.ScalarValue(function);
var result = GoldenSectionMinimizer.Minimum(objective, lowerBound, upperBound, tolerance, maxIterations);
return result.MinimizingPoint;
}
///
/// Find vector x that minimizes the function f(x) using the Nelder-Mead Simplex algorithm.
/// For more options and diagnostics consider to use directly.
///
public static double OfScalarFunction(Func function, double initialGuess, double tolerance = 1e-8, int maxIterations = 1000)
{
var objective = ObjectiveFunction.Value(v => function(v[0]));
var result = NelderMeadSimplex.Minimum(objective, CreateVector.Dense(new[] { initialGuess }), tolerance, maxIterations);
return result.MinimizingPoint[0];
}
///
/// Find vector x that minimizes the function f(x) using the Nelder-Mead Simplex algorithm.
/// For more options and diagnostics consider to use directly.
///
public static Tuple OfFunction(Func function, double initialGuess0, double initialGuess1, double tolerance = 1e-8, int maxIterations = 1000)
{
var objective = ObjectiveFunction.Value(v => function(v[0], v[1]));
var result = NelderMeadSimplex.Minimum(objective, CreateVector.Dense(new[] { initialGuess0, initialGuess1 }), tolerance, maxIterations);
return Tuple.Create(result.MinimizingPoint[0], result.MinimizingPoint[1]);
}
///
/// Find vector x that minimizes the function f(x) using the Nelder-Mead Simplex algorithm.
/// For more options and diagnostics consider to use directly.
///
public static Tuple OfFunction(Func function, double initialGuess0, double initialGuess1, double initialGuess2, double tolerance = 1e-8, int maxIterations = 1000)
{
var objective = ObjectiveFunction.Value(v => function(v[0], v[1], v[2]));
var result = NelderMeadSimplex.Minimum(objective, CreateVector.Dense(new[] { initialGuess0, initialGuess1, initialGuess2 }), tolerance, maxIterations);
return Tuple.Create(result.MinimizingPoint[0], result.MinimizingPoint[1], result.MinimizingPoint[2]);
}
///
/// Find vector x that minimizes the function f(x) using the Nelder-Mead Simplex algorithm.
/// For more options and diagnostics consider to use directly.
///
public static Vector OfFunction(Func, double> function, Vector initialGuess, double tolerance=1e-8, int maxIterations=1000)
{
var objective = ObjectiveFunction.Value(function);
var result = NelderMeadSimplex.Minimum(objective, initialGuess, tolerance, maxIterations);
return result.MinimizingPoint;
}
///
/// Find vector x that minimizes the function f(x), constrained within bounds, using the Broyden–Fletcher–Goldfarb–Shanno Bounded (BFGS-B) algorithm.
/// The missing gradient is evaluated numerically (forward difference).
/// For more options and diagnostics consider to use directly.
///
public static Vector OfFunctionConstrained(Func, double> function, Vector lowerBound, Vector upperBound, Vector initialGuess, double gradientTolerance=1e-5, double parameterTolerance=1e-5, double functionProgressTolerance=1e-5, int maxIterations=1000)
{
var objective = ObjectiveFunction.Value(function);
var objectiveWithGradient = new Optimization.ObjectiveFunctions.ForwardDifferenceGradientObjectiveFunction(objective, lowerBound, upperBound);
var algorithm = new BfgsBMinimizer(gradientTolerance, parameterTolerance, functionProgressTolerance, maxIterations);
var result = algorithm.FindMinimum(objectiveWithGradient, lowerBound, upperBound, initialGuess);
return result.MinimizingPoint;
}
///
/// Find vector x that minimizes the function f(x) using the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm.
/// For more options and diagnostics consider to use directly.
/// An alternative routine using conjugate gradients (CG) is available in .
///
public static Vector OfFunctionGradient(Func, double> function, Func, Vector> gradient, Vector initialGuess, double gradientTolerance=1e-5, double parameterTolerance=1e-5, double functionProgressTolerance=1e-5, int maxIterations=1000)
{
var objective = ObjectiveFunction.Gradient(function, gradient);
var algorithm = new BfgsMinimizer(gradientTolerance, parameterTolerance, functionProgressTolerance, maxIterations);
var result = algorithm.FindMinimum(objective, initialGuess);
return result.MinimizingPoint;
}
///
/// Find vector x that minimizes the function f(x) using the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm.
/// For more options and diagnostics consider to use directly.
/// An alternative routine using conjugate gradients (CG) is available in .
///
public static Vector OfFunctionGradient(Func, Tuple>> functionGradient, Vector initialGuess, double gradientTolerance=1e-5, double parameterTolerance=1e-5, double functionProgressTolerance=1e-5, int maxIterations=1000)
{
var objective = ObjectiveFunction.Gradient(functionGradient);
var algorithm = new BfgsMinimizer(gradientTolerance, parameterTolerance, functionProgressTolerance, maxIterations);
var result = algorithm.FindMinimum(objective, initialGuess);
return result.MinimizingPoint;
}
///
/// Find vector x that minimizes the function f(x), constrained within bounds, using the Broyden–Fletcher–Goldfarb–Shanno Bounded (BFGS-B) algorithm.
/// For more options and diagnostics consider to use directly.
///
public static Vector OfFunctionGradientConstrained(Func, double> function, Func, Vector> gradient, Vector lowerBound, Vector upperBound, Vector initialGuess, double gradientTolerance=1e-5, double parameterTolerance=1e-5, double functionProgressTolerance=1e-5, int maxIterations=1000)
{
var objective = ObjectiveFunction.Gradient(function, gradient);
var algorithm = new BfgsBMinimizer(gradientTolerance, parameterTolerance, functionProgressTolerance, maxIterations);
var result = algorithm.FindMinimum(objective, lowerBound, upperBound, initialGuess);
return result.MinimizingPoint;
}
///
/// Find vector x that minimizes the function f(x), constrained within bounds, using the Broyden–Fletcher–Goldfarb–Shanno Bounded (BFGS-B) algorithm.
/// For more options and diagnostics consider to use directly.
///
public static Vector OfFunctionGradientConstrained(Func, Tuple>> functionGradient, Vector lowerBound, Vector upperBound, Vector initialGuess, double gradientTolerance=1e-5, double parameterTolerance=1e-5, double functionProgressTolerance=1e-5, int maxIterations=1000)
{
var objective = ObjectiveFunction.Gradient(functionGradient);
var algorithm = new BfgsBMinimizer(gradientTolerance, parameterTolerance, functionProgressTolerance, maxIterations);
var result = algorithm.FindMinimum(objective, lowerBound, upperBound, initialGuess);
return result.MinimizingPoint;
}
///
/// Find vector x that minimizes the function f(x) using the Newton algorithm.
/// For more options and diagnostics consider to use directly.
///
public static Vector OfFunctionGradientHessian(Func, double> function, Func, Vector> gradient, Func, Matrix> hessian, Vector initialGuess, double gradientTolerance=1e-8, int maxIterations=1000)
{
var objective = ObjectiveFunction.GradientHessian(function, gradient, hessian);
var result = NewtonMinimizer.Minimum(objective, initialGuess, gradientTolerance, maxIterations);
return result.MinimizingPoint;
}
///
/// Find vector x that minimizes the function f(x) using the Newton algorithm.
/// For more options and diagnostics consider to use directly.
///
public static Vector OfFunctionGradientHessian(Func, Tuple, Matrix>> functionGradientHessian, Vector initialGuess, double gradientTolerance=1e-8, int maxIterations=1000)
{
var objective = ObjectiveFunction.GradientHessian(functionGradientHessian);
var result = NewtonMinimizer.Minimum(objective, initialGuess, gradientTolerance, maxIterations);
return result.MinimizingPoint;
}
}
}