// // Math.NET Numerics, part of the Math.NET Project // http://numerics.mathdotnet.com // http://github.com/mathnet/mathnet-numerics // // Copyright (c) 2009-2014 Math.NET // // Permission is hereby granted, free of charge, to any person // obtaining a copy of this software and associated documentation // files (the "Software"), to deal in the Software without // restriction, including without limitation the rights to use, // copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the // Software is furnished to do so, subject to the following // conditions: // // The above copyright notice and this permission notice shall be // included in all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES // OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT // HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, // WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR // OTHER DEALINGS IN THE SOFTWARE. // using System; using System.Collections.Generic; using System.Linq; namespace IStation.Numerics.Interpolation { /// /// Cubic Spline Interpolation. /// /// Supports both differentiation and integration. public class CubicSpline : IInterpolation { readonly double[] _x; readonly double[] _c0; readonly double[] _c1; readonly double[] _c2; readonly double[] _c3; readonly Lazy _indefiniteIntegral; /// sample points (N+1), sorted ascending /// Zero order spline coefficients (N) /// First order spline coefficients (N) /// second order spline coefficients (N) /// third order spline coefficients (N) public CubicSpline(double[] x, double[] c0, double[] c1, double[] c2, double[] c3) { if (x.Length != c0.Length + 1 || x.Length != c1.Length + 1 || x.Length != c2.Length + 1 || x.Length != c3.Length + 1) { throw new ArgumentException("All vectors must have the same dimensionality."); } if (x.Length < 2) { throw new ArgumentException("The given array is too small. It must be at least 2 long.", nameof(x)); } _x = x; _c0 = c0; _c1 = c1; _c2 = c2; _c3 = c3; _indefiniteIntegral = new Lazy(ComputeIndefiniteIntegral); } /// /// Create a Hermite cubic spline interpolation from a set of (x,y) value pairs and their slope (first derivative), sorted ascendingly by x. /// public static CubicSpline InterpolateHermiteSorted(double[] x, double[] y, double[] firstDerivatives) { if (x.Length != y.Length || x.Length != firstDerivatives.Length) { throw new ArgumentException("All vectors must have the same dimensionality."); } if (x.Length < 2) { throw new ArgumentException("The given array is too small. It must be at least 2 long.", nameof(x)); } var c0 = new double[x.Length - 1]; var c1 = new double[x.Length - 1]; var c2 = new double[x.Length - 1]; var c3 = new double[x.Length - 1]; for (int i = 0; i < c1.Length; i++) { double w = x[i + 1] - x[i]; double w2 = w*w; c0[i] = y[i]; c1[i] = firstDerivatives[i]; c2[i] = (3*(y[i + 1] - y[i])/w - 2*firstDerivatives[i] - firstDerivatives[i + 1])/w; c3[i] = (2*(y[i] - y[i + 1])/w + firstDerivatives[i] + firstDerivatives[i + 1])/w2; } return new CubicSpline(x, c0, c1, c2, c3); } /// /// Create a Hermite cubic spline interpolation from an unsorted set of (x,y) value pairs and their slope (first derivative). /// WARNING: Works in-place and can thus causes the data array to be reordered. /// public static CubicSpline InterpolateHermiteInplace(double[] x, double[] y, double[] firstDerivatives) { if (x.Length != y.Length || x.Length != firstDerivatives.Length) { throw new ArgumentException("All vectors must have the same dimensionality."); } if (x.Length < 2) { throw new ArgumentException("The given array is too small. It must be at least 2 long.", nameof(x)); } Sorting.Sort(x, y, firstDerivatives); return InterpolateHermiteSorted(x, y, firstDerivatives); } /// /// Create a Hermite cubic spline interpolation from an unsorted set of (x,y) value pairs and their slope (first derivative). /// public static CubicSpline InterpolateHermite(IEnumerable x, IEnumerable y, IEnumerable firstDerivatives) { // note: we must make a copy, even if the input was arrays already return InterpolateHermiteInplace(x.ToArray(), y.ToArray(), firstDerivatives.ToArray()); } /// /// Create an Akima cubic spline interpolation from a set of (x,y) value pairs, sorted ascendingly by x. /// Akima splines are robust to outliers. /// public static CubicSpline InterpolateAkimaSorted(double[] x, double[] y) { if (x.Length != y.Length) { throw new ArgumentException("All vectors must have the same dimensionality."); } if (x.Length < 5) { throw new ArgumentException("The given array is too small. It must be at least 5 long.", nameof(x)); } /* Prepare divided differences (diff) and weights (w) */ var diff = new double[x.Length - 1]; var weights = new double[x.Length - 1]; for (int i = 0; i < diff.Length; i++) { diff[i] = (y[i + 1] - y[i])/(x[i + 1] - x[i]); } for (int i = 1; i < weights.Length; i++) { weights[i] = Math.Abs(diff[i] - diff[i - 1]); } /* Prepare Hermite interpolation scheme */ var dd = new double[x.Length]; for (int i = 2; i < dd.Length - 2; i++) { dd[i] = weights[i - 1].AlmostEqual(0.0) && weights[i + 1].AlmostEqual(0.0) ? (((x[i + 1] - x[i])*diff[i - 1]) + ((x[i] - x[i - 1])*diff[i]))/(x[i + 1] - x[i - 1]) : ((weights[i + 1]*diff[i - 1]) + (weights[i - 1]*diff[i]))/(weights[i + 1] + weights[i - 1]); } dd[0] = DifferentiateThreePoint(x, y, 0, 0, 1, 2); dd[1] = DifferentiateThreePoint(x, y, 1, 0, 1, 2); dd[x.Length - 2] = DifferentiateThreePoint(x, y, x.Length - 2, x.Length - 3, x.Length - 2, x.Length - 1); dd[x.Length - 1] = DifferentiateThreePoint(x, y, x.Length - 1, x.Length - 3, x.Length - 2, x.Length - 1); /* Build Akima spline using Hermite interpolation scheme */ return InterpolateHermiteSorted(x, y, dd); } /// /// Create an Akima cubic spline interpolation from an unsorted set of (x,y) value pairs. /// Akima splines are robust to outliers. /// WARNING: Works in-place and can thus causes the data array to be reordered. /// public static CubicSpline InterpolateAkimaInplace(double[] x, double[] y) { if (x.Length != y.Length) { throw new ArgumentException("All vectors must have the same dimensionality."); } Sorting.Sort(x, y); return InterpolateAkimaSorted(x, y); } /// /// Create an Akima cubic spline interpolation from an unsorted set of (x,y) value pairs. /// Akima splines are robust to outliers. /// public static CubicSpline InterpolateAkima(IEnumerable x, IEnumerable y) { // note: we must make a copy, even if the input was arrays already return InterpolateAkimaInplace(x.ToArray(), y.ToArray()); } /// /// Create a piecewise cubic Hermite interpolating polynomial from an unsorted set of (x,y) value pairs. /// Monotone-preserving interpolation with continuous first derivative. /// public static CubicSpline InterpolatePchipSorted(double[] x, double[] y) { // Implementation based on "Numerical Computing with Matlab" (Moler, 2004). if (x.Length != y.Length) { throw new ArgumentException("All vectors must have the same dimensionality."); } if (x.Length < 3) { throw new ArgumentException("The given array is too small. It must be at least 3 long.", nameof(x)); } var m = new double[x.Length - 1]; for (int i = 0; i < m.Length; i++) { m[i] = (y[i + 1] - y[i])/(x[i + 1] - x[i]); } var dd = new double[x.Length]; var hPrev = x[1] - x[0]; // This check is quite costly as it usually involves a Math.Pow(). var mPrevIs0 = m[0].AlmostEqual(0.0); for (var i = 1; i < x.Length - 1; ++i) { var h = x[i + 1] - x[i]; var mIs0 = m[i].AlmostEqual(0.0); if (mIs0 || mPrevIs0 || Math.Sign(m[i]) != Math.Sign(m[i - 1])) { dd[i] = 0; } else { // Weighted harmonic mean of each slope. var w1 = 2 * h + hPrev; var w2 = h + 2 * hPrev; dd[i] = (w1 + w2) / (w1 / m[i - 1] + w2 / m[i]); } hPrev = h; mPrevIs0 = mIs0; } // Special case end-points. dd[0] = PchipEndPoints(x[1] - x[0], x[2] - x[1], m[0], m[1]); dd[dd.Length - 1] = PchipEndPoints( x[x.Length - 1] - x[x.Length - 2], x[x.Length - 2] - x[x.Length - 3], m[m.Length - 1], m[m.Length - 2]); return InterpolateHermiteSorted(x, y, dd); } static double PchipEndPoints(double h0, double h1, double m0, double m1) { // One-sided, shape-preserving, three-point estimate for the derivative. var d = ((2 * h0 + h1) * m0 - h0 * m1) / (h0 + h1); if (Math.Sign(d) != Math.Sign(m0)) { return 0.0; } if (Math.Sign(m0) != Math.Sign(m1) && (Math.Abs(d) > 3 * Math.Abs(m0))) { return 3 * m0; } return d; } /// /// Create a piecewise cubic Hermite interpolating polynomial from an unsorted set of (x,y) value pairs. /// Monotone-preserving interpolation with continuous first derivative. /// WARNING: Works in-place and can thus causes the data array to be reordered. /// public static CubicSpline InterpolatePchipInplace(double[] x, double[] y) { if (x.Length != y.Length) { throw new ArgumentException("All vectors must have the same dimensionality."); } Sorting.Sort(x, y); return InterpolatePchipSorted(x, y); } /// /// Create a piecewise cubic Hermite interpolating polynomial from an unsorted set of (x,y) value pairs. /// Monotone-preserving interpolation with continuous first derivative. /// public static CubicSpline InterpolatePchip(IEnumerable x, IEnumerable y) { // note: we must make a copy, even if the input was arrays already return InterpolatePchipInplace(x.ToArray(), y.ToArray()); } /// /// Create a cubic spline interpolation from a set of (x,y) value pairs, sorted ascendingly by x, /// and custom boundary/termination conditions. /// public static CubicSpline InterpolateBoundariesSorted(double[] x, double[] y, SplineBoundaryCondition leftBoundaryCondition, double leftBoundary, SplineBoundaryCondition rightBoundaryCondition, double rightBoundary) { if (x.Length != y.Length) { throw new ArgumentException("All vectors must have the same dimensionality."); } if (x.Length < 2) { throw new ArgumentException("The given array is too small. It must be at least 2 long.", nameof(x)); } int n = x.Length; // normalize special cases if ((n == 2) && (leftBoundaryCondition == SplineBoundaryCondition.ParabolicallyTerminated) && (rightBoundaryCondition == SplineBoundaryCondition.ParabolicallyTerminated)) { leftBoundaryCondition = SplineBoundaryCondition.SecondDerivative; leftBoundary = 0d; rightBoundaryCondition = SplineBoundaryCondition.SecondDerivative; rightBoundary = 0d; } if (leftBoundaryCondition == SplineBoundaryCondition.Natural) { leftBoundaryCondition = SplineBoundaryCondition.SecondDerivative; leftBoundary = 0d; } if (rightBoundaryCondition == SplineBoundaryCondition.Natural) { rightBoundaryCondition = SplineBoundaryCondition.SecondDerivative; rightBoundary = 0d; } var a1 = new double[n]; var a2 = new double[n]; var a3 = new double[n]; var b = new double[n]; // Left Boundary switch (leftBoundaryCondition) { case SplineBoundaryCondition.ParabolicallyTerminated: a1[0] = 0; a2[0] = 1; a3[0] = 1; b[0] = 2*(y[1] - y[0])/(x[1] - x[0]); break; case SplineBoundaryCondition.FirstDerivative: a1[0] = 0; a2[0] = 1; a3[0] = 0; b[0] = leftBoundary; break; case SplineBoundaryCondition.SecondDerivative: a1[0] = 0; a2[0] = 2; a3[0] = 1; b[0] = (3*((y[1] - y[0])/(x[1] - x[0]))) - (0.5*leftBoundary*(x[1] - x[0])); break; default: throw new NotSupportedException("Invalid Left Boundary Condition."); } // Central Conditions for (int i = 1; i < x.Length - 1; i++) { a1[i] = x[i + 1] - x[i]; a2[i] = 2*(x[i + 1] - x[i - 1]); a3[i] = x[i] - x[i - 1]; b[i] = (3*(y[i] - y[i - 1])/(x[i] - x[i - 1])*(x[i + 1] - x[i])) + (3*(y[i + 1] - y[i])/(x[i + 1] - x[i])*(x[i] - x[i - 1])); } // Right Boundary switch (rightBoundaryCondition) { case SplineBoundaryCondition.ParabolicallyTerminated: a1[n - 1] = 1; a2[n - 1] = 1; a3[n - 1] = 0; b[n - 1] = 2*(y[n - 1] - y[n - 2])/(x[n - 1] - x[n - 2]); break; case SplineBoundaryCondition.FirstDerivative: a1[n - 1] = 0; a2[n - 1] = 1; a3[n - 1] = 0; b[n - 1] = rightBoundary; break; case SplineBoundaryCondition.SecondDerivative: a1[n - 1] = 1; a2[n - 1] = 2; a3[n - 1] = 0; b[n - 1] = (3*(y[n - 1] - y[n - 2])/(x[n - 1] - x[n - 2])) + (0.5*rightBoundary*(x[n - 1] - x[n - 2])); break; default: throw new NotSupportedException("Invalid Right Boundary Condition."); } // Build Spline double[] dd = SolveTridiagonal(a1, a2, a3, b); return InterpolateHermiteSorted(x, y, dd); } /// /// Create a cubic spline interpolation from an unsorted set of (x,y) value pairs and custom boundary/termination conditions. /// WARNING: Works in-place and can thus causes the data array to be reordered. /// public static CubicSpline InterpolateBoundariesInplace(double[] x, double[] y, SplineBoundaryCondition leftBoundaryCondition, double leftBoundary, SplineBoundaryCondition rightBoundaryCondition, double rightBoundary) { if (x.Length != y.Length) { throw new ArgumentException("All vectors must have the same dimensionality."); } Sorting.Sort(x, y); return InterpolateBoundariesSorted(x, y, leftBoundaryCondition, leftBoundary, rightBoundaryCondition, rightBoundary); } /// /// Create a cubic spline interpolation from an unsorted set of (x,y) value pairs and custom boundary/termination conditions. /// public static CubicSpline InterpolateBoundaries(IEnumerable x, IEnumerable y, SplineBoundaryCondition leftBoundaryCondition, double leftBoundary, SplineBoundaryCondition rightBoundaryCondition, double rightBoundary) { // note: we must make a copy, even if the input was arrays already return InterpolateBoundariesInplace(x.ToArray(), y.ToArray(), leftBoundaryCondition, leftBoundary, rightBoundaryCondition, rightBoundary); } /// /// Create a natural cubic spline interpolation from a set of (x,y) value pairs /// and zero second derivatives at the two boundaries, sorted ascendingly by x. /// public static CubicSpline InterpolateNaturalSorted(double[] x, double[] y) { return InterpolateBoundariesSorted(x, y, SplineBoundaryCondition.SecondDerivative, 0.0, SplineBoundaryCondition.SecondDerivative, 0.0); } /// /// Create a natural cubic spline interpolation from an unsorted set of (x,y) value pairs /// and zero second derivatives at the two boundaries. /// WARNING: Works in-place and can thus causes the data array to be reordered. /// public static CubicSpline InterpolateNaturalInplace(double[] x, double[] y) { return InterpolateBoundariesInplace(x, y, SplineBoundaryCondition.SecondDerivative, 0.0, SplineBoundaryCondition.SecondDerivative, 0.0); } /// /// Create a natural cubic spline interpolation from an unsorted set of (x,y) value pairs /// and zero second derivatives at the two boundaries. /// public static CubicSpline InterpolateNatural(IEnumerable x, IEnumerable y) { return InterpolateBoundaries(x, y, SplineBoundaryCondition.SecondDerivative, 0.0, SplineBoundaryCondition.SecondDerivative, 0.0); } /// /// Three-Point Differentiation Helper. /// /// Sample Points t. /// Sample Values x(t). /// Index of the point of the differentiation. /// Index of the first sample. /// Index of the second sample. /// Index of the third sample. /// The derivative approximation. static double DifferentiateThreePoint(double[] xx, double[] yy, int indexT, int index0, int index1, int index2) { double x0 = yy[index0]; double x1 = yy[index1]; double x2 = yy[index2]; double t = xx[indexT] - xx[index0]; double t1 = xx[index1] - xx[index0]; double t2 = xx[index2] - xx[index0]; double a = (x2 - x0 - (t2/t1*(x1 - x0)))/(t2*(t2 - t1)); double b = (x1 - x0 - a*t1*t1)/t1; return (2*a*t) + b; } /// /// Tridiagonal Solve Helper. /// /// The a-vector[n]. /// The b-vector[n], will be modified by this function. /// The c-vector[n]. /// The d-vector[n], will be modified by this function. /// The x-vector[n] static double[] SolveTridiagonal(double[] a, double[] b, double[] c, double[] d) { for (int k = 1; k < a.Length; k++) { double t = a[k]/b[k - 1]; b[k] = b[k] - (t*c[k - 1]); d[k] = d[k] - (t*d[k - 1]); } var x = new double[a.Length]; x[x.Length - 1] = d[d.Length - 1]/b[b.Length - 1]; for (int k = x.Length - 2; k >= 0; k--) { x[k] = (d[k] - (c[k]*x[k + 1]))/b[k]; } return x; } /// /// Gets a value indicating whether the algorithm supports differentiation (interpolated derivative). /// bool IInterpolation.SupportsDifferentiation => true; /// /// Gets a value indicating whether the algorithm supports integration (interpolated quadrature). /// bool IInterpolation.SupportsIntegration => true; /// /// Interpolate at point t. /// /// Point t to interpolate at. /// Interpolated value x(t). public double Interpolate(double t) { int k = LeftSegmentIndex(t); var x = t - _x[k]; return _c0[k] + x*(_c1[k] + x*(_c2[k] + x*_c3[k])); } /// /// Differentiate at point t. /// /// Point t to interpolate at. /// Interpolated first derivative at point t. public double Differentiate(double t) { int k = LeftSegmentIndex(t); var x = t - _x[k]; return _c1[k] + x*(2*_c2[k] + x*3*_c3[k]); } /// /// Differentiate twice at point t. /// /// Point t to interpolate at. /// Interpolated second derivative at point t. public double Differentiate2(double t) { int k = LeftSegmentIndex(t); var x = t - _x[k]; return 2*_c2[k] + x*6*_c3[k]; } /// /// Indefinite integral at point t. /// /// Point t to integrate at. public double Integrate(double t) { int k = LeftSegmentIndex(t); var x = t - _x[k]; return _indefiniteIntegral.Value[k] + x*(_c0[k] + x*(_c1[k]/2 + x*(_c2[k]/3 + x*_c3[k]/4))); } /// /// Definite integral between points a and b. /// /// Left bound of the integration interval [a,b]. /// Right bound of the integration interval [a,b]. public double Integrate(double a, double b) { return Integrate(b) - Integrate(a); } double[] ComputeIndefiniteIntegral() { var integral = new double[_c1.Length]; for (int i = 0; i < integral.Length - 1; i++) { double w = _x[i + 1] - _x[i]; integral[i + 1] = integral[i] + w*(_c0[i] + w*(_c1[i]/2 + w*(_c2[i]/3 + w*_c3[i]/4))); } return integral; } /// /// Find the index of the greatest sample point smaller than t, /// or the left index of the closest segment for extrapolation. /// int LeftSegmentIndex(double t) { int index = Array.BinarySearch(_x, t); if (index < 0) { index = ~index - 1; } return Math.Min(Math.Max(index, 0), _x.Length - 2); } } }