//
// Math.NET Numerics, part of the Math.NET Project
// http://numerics.mathdotnet.com
// http://github.com/mathnet/mathnet-numerics
//
// Copyright (c) 2009-2010 Math.NET
//
// Permission is hereby granted, free of charge, to any person
// obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without
// restriction, including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following
// conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
//
using System;
namespace IStation.Numerics
{
///
/// Class to represent a permutation for a subset of the natural numbers.
///
[Serializable]
public class Permutation
{
#region fields
///
/// Entry _indices[i] represents the location to which i is permuted to.
///
private readonly int[] _indices;
#endregion fields
#region Constructor
///
/// Initializes a new instance of the Permutation class.
///
/// An array which represents where each integer is permuted too: indices[i] represents that integer i
/// is permuted to location indices[i].
public Permutation(int[] indices)
{
if (!CheckForProperPermutation(indices))
{
throw new ArgumentException("The integer array does not represent a valid permutation.", nameof(indices));
}
_indices = (int[])indices.Clone();
}
#endregion
///
/// Gets the number of elements this permutation is over.
///
public int Dimension => _indices.Length;
///
/// Computes where permutes too.
///
/// The index to permute from.
/// The index which is permuted to.
public int this[int idx] => _indices[idx];
///
/// Computes the inverse of the permutation.
///
/// The inverse of the permutation.
public Permutation Inverse()
{
var invIdx = new int[Dimension];
for (int i = 0; i < invIdx.Length; i++)
{
invIdx[_indices[i]] = i;
}
return new Permutation(invIdx);
}
///
/// Construct an array from a sequence of inversions.
///
///
/// From wikipedia: the permutation 12043 has the inversions (0,2), (1,2) and (3,4). This would be
/// encoded using the array [22244].
///
/// The set of inversions to construct the permutation from.
/// A permutation generated from a sequence of inversions.
public static Permutation FromInversions(int[] inv)
{
var idx = new int[inv.Length];
for (int i = 0; i < inv.Length; i++)
{
idx[i] = i;
}
for (int i = inv.Length - 1; i >= 0; i--)
{
if (idx[i] != inv[i])
{
int t = idx[i];
idx[i] = idx[inv[i]];
idx[inv[i]] = t;
}
}
return new Permutation(idx);
}
///
/// Construct a sequence of inversions from the permutation.
///
///
/// From wikipedia: the permutation 12043 has the inversions (0,2), (1,2) and (3,4). This would be
/// encoded using the array [22244].
///
/// A sequence of inversions.
public int[] ToInversions()
{
var idx = (int[])_indices.Clone();
for (int i = 0; i < idx.Length; i++)
{
if (idx[i] != i)
{
int q = Array.FindIndex(idx, i + 1, x => x == i);
var t = idx[i];
idx[i] = q;
idx[q] = t;
}
}
return idx;
}
///
/// Checks whether the array represents a proper permutation.
///
/// An array which represents where each integer is permuted too: indices[i] represents that integer i
/// is permuted to location indices[i].
/// True if represents a proper permutation, false otherwise.
static bool CheckForProperPermutation(int[] indices)
{
var idxCheck = new bool[indices.Length];
for (int i = 0; i < indices.Length; i++)
{
if (indices[i] >= indices.Length || indices[i] < 0)
{
return false;
}
idxCheck[indices[i]] = true;
}
for (int i = 0; i < indices.Length; i++)
{
if (idxCheck[i] == false)
{
return false;
}
}
return true;
}
}
}