//
// Math.NET Numerics, part of the Math.NET Project
// https://numerics.mathdotnet.com
//
// Copyright (c) 2009-2018 Math.NET
//
// Permission is hereby granted, free of charge, to any person
// obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without
// restriction, including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following
// conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
//
using System;
using System.Runtime.CompilerServices;
using IStation.Numerics.Threading;
using Complex = System.Numerics.Complex;
namespace IStation.Numerics.Providers.FourierTransform.Managed
{
internal partial class ManagedFourierTransformProvider
{
///
/// Radix-2 Reorder Helper Method
///
/// Sample type
/// Sample vector
private static void Radix2Reorder(T[] samples)
{
var j = 0;
for (var i = 0; i < samples.Length - 1; i++)
{
if (i < j)
{
var temp = samples[i];
samples[i] = samples[j];
samples[j] = temp;
}
var m = samples.Length;
do
{
m >>= 1;
j ^= m;
}
while ((j & m) == 0);
}
}
///
/// Radix-2 Step Helper Method
///
/// Sample vector.
/// Fourier series exponent sign.
/// Level Group Size.
/// Index inside of the level.
#if !NET40
[MethodImpl(MethodImplOptions.AggressiveInlining)]
#endif
private static void Radix2Step(Complex32[] samples, int exponentSign, int levelSize, int k)
{
// Twiddle Factor
var exponent = (exponentSign * k) * Constants.Pi / levelSize;
var w = new Complex32((float)Math.Cos(exponent), (float)Math.Sin(exponent));
var step = levelSize << 1;
for (var i = k; i < samples.Length; i += step)
{
var ai = samples[i];
var t = w * samples[i + levelSize];
samples[i] = ai + t;
samples[i + levelSize] = ai - t;
}
}
///
/// Radix-2 Step Helper Method
///
/// Sample vector.
/// Fourier series exponent sign.
/// Level Group Size.
/// Index inside of the level.
#if !NET40
[MethodImpl(MethodImplOptions.AggressiveInlining)]
#endif
private static void Radix2Step(Complex[] samples, int exponentSign, int levelSize, int k)
{
// Twiddle Factor
var exponent = (exponentSign * k) * Constants.Pi / levelSize;
var w = new Complex(Math.Cos(exponent), Math.Sin(exponent));
var step = levelSize << 1;
for (var i = k; i < samples.Length; i += step)
{
var ai = samples[i];
var t = w * samples[i + levelSize];
samples[i] = ai + t;
samples[i + levelSize] = ai - t;
}
}
///
/// Radix-2 generic FFT for power-of-two sized sample vectors.
///
private static void Radix2Forward(Complex32[] data)
{
Radix2Reorder(data);
for (var levelSize = 1; levelSize < data.Length; levelSize *= 2)
{
for (var k = 0; k < levelSize; k++)
{
Radix2Step(data, -1, levelSize, k);
}
}
}
///
/// Radix-2 generic FFT for power-of-two sized sample vectors.
///
private static void Radix2Forward(Complex[] data)
{
Radix2Reorder(data);
for (var levelSize = 1; levelSize < data.Length; levelSize *= 2)
{
for (var k = 0; k < levelSize; k++)
{
Radix2Step(data, -1, levelSize, k);
}
}
}
///
/// Radix-2 generic FFT for power-of-two sized sample vectors.
///
private static void Radix2Inverse(Complex32[] data)
{
Radix2Reorder(data);
for (var levelSize = 1; levelSize < data.Length; levelSize *= 2)
{
for (var k = 0; k < levelSize; k++)
{
Radix2Step(data, 1, levelSize, k);
}
}
}
///
/// Radix-2 generic FFT for power-of-two sized sample vectors.
///
private static void Radix2Inverse(Complex[] data)
{
Radix2Reorder(data);
for (var levelSize = 1; levelSize < data.Length; levelSize *= 2)
{
for (var k = 0; k < levelSize; k++)
{
Radix2Step(data, 1, levelSize, k);
}
}
}
///
/// Radix-2 generic FFT for power-of-two sample vectors (Parallel Version).
///
private static void Radix2ForwardParallel(Complex32[] data)
{
Radix2Reorder(data);
for (var levelSize = 1; levelSize < data.Length; levelSize *= 2)
{
var size = levelSize;
CommonParallel.For(0, size, 64, (u, v) =>
{
for (int i = u; i < v; i++)
{
Radix2Step(data, -1, size, i);
}
});
}
}
///
/// Radix-2 generic FFT for power-of-two sample vectors (Parallel Version).
///
private static void Radix2ForwardParallel(Complex[] data)
{
Radix2Reorder(data);
for (var levelSize = 1; levelSize < data.Length; levelSize *= 2)
{
var size = levelSize;
CommonParallel.For(0, size, 64, (u, v) =>
{
for (int i = u; i < v; i++)
{
Radix2Step(data, -1, size, i);
}
});
}
}
///
/// Radix-2 generic FFT for power-of-two sample vectors (Parallel Version).
///
private static void Radix2InverseParallel(Complex32[] data)
{
Radix2Reorder(data);
for (var levelSize = 1; levelSize < data.Length; levelSize *= 2)
{
var size = levelSize;
CommonParallel.For(0, size, 64, (u, v) =>
{
for (int i = u; i < v; i++)
{
Radix2Step(data, 1, size, i);
}
});
}
}
///
/// Radix-2 generic FFT for power-of-two sample vectors (Parallel Version).
///
private static void Radix2InverseParallel(Complex[] data)
{
Radix2Reorder(data);
for (var levelSize = 1; levelSize < data.Length; levelSize *= 2)
{
var size = levelSize;
CommonParallel.For(0, size, 64, (u, v) =>
{
for (int i = u; i < v; i++)
{
Radix2Step(data, 1, size, i);
}
});
}
}
}
}