//
// Math.NET Numerics, part of the Math.NET Project
// http://numerics.mathdotnet.com
// http://github.com/mathnet/mathnet-numerics
//
// Copyright (c) 2009-2015 Math.NET
//
// Permission is hereby granted, free of charge, to any person
// obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without
// restriction, including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following
// conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
//
using System;
using System.Collections.Generic;
namespace IStation.Numerics.Statistics
{
///
/// Running statistics over a window of data, allows updating by adding values.
///
public class MovingStatistics
{
readonly double[] _oldValues;
readonly int _windowSize;
long _count;
long _totalCountOffset;
int _lastIndex;
int _lastNaNTimeToLive;
int _lastPosInfTimeToLive;
int _lastNegInfTimeToLive;
double _m1;
double _m2;
double _max = double.NegativeInfinity;
double _min = double.PositiveInfinity;
public MovingStatistics(int windowSize)
{
if (windowSize < 1)
{
throw new ArgumentException(string.Format("Value must be positive."), nameof(windowSize));
}
_windowSize = windowSize;
_oldValues = new double[_windowSize];
}
public MovingStatistics(int windowSize, IEnumerable values)
: this(windowSize)
{
PushRange(values);
}
public int WindowSize => _windowSize;
///
/// Gets the total number of samples.
///
public long Count => _totalCountOffset + _count;
///
/// Returns the minimum value in the sample data.
/// Returns NaN if data is empty or if any entry is NaN.
///
public double Minimum
{
get
{
if (_lastNaNTimeToLive > 0)
{
return double.NaN;
}
if (_lastNegInfTimeToLive > 0)
{
return double.NegativeInfinity;
}
return (_count > 0 || _lastPosInfTimeToLive > 0) ? _min : double.NaN;
}
}
///
/// Returns the maximum value in the sample data.
/// Returns NaN if data is empty or if any entry is NaN.
///
public double Maximum
{
get
{
if (_lastNaNTimeToLive > 0)
{
return double.NaN;
}
if (_lastPosInfTimeToLive > 0)
{
return double.PositiveInfinity;
}
return (_count > 0 || _lastNegInfTimeToLive > 0) ? _max : double.NaN;
}
}
///
/// Evaluates the sample mean, an estimate of the population mean.
/// Returns NaN if data is empty or if any entry is NaN.
///
public double Mean
{
get
{
if (_lastNaNTimeToLive > 0 || (_lastPosInfTimeToLive > 0 && _lastNegInfTimeToLive > 0))
{
return double.NaN;
}
if (_lastPosInfTimeToLive > 0)
{
return double.PositiveInfinity;
}
if (_lastNegInfTimeToLive > 0)
{
return double.NegativeInfinity;
}
return _count == 0 ? double.NaN : _m1;
}
}
///
/// Estimates the unbiased population variance from the provided samples.
/// On a dataset of size N will use an N-1 normalizer (Bessel's correction).
/// Returns NaN if data has less than two entries or if any entry is NaN.
///
public double Variance
{
get
{
if (_lastNaNTimeToLive > 0 || _lastNegInfTimeToLive > 0)
{
return double.NaN;
}
if (_lastPosInfTimeToLive > 0)
{
return double.PositiveInfinity;
}
return _count < 2 ? double.NaN : _m2 / (_count - 1);
}
}
///
/// Evaluates the variance from the provided full population.
/// On a dataset of size N will use an N normalizer and would thus be biased if applied to a subset.
/// Returns NaN if data is empty or if any entry is NaN.
///
public double PopulationVariance
{
get
{
if (_lastNaNTimeToLive > 0 || _lastNegInfTimeToLive > 0)
{
return double.NaN;
}
if (_lastPosInfTimeToLive > 0)
{
return double.PositiveInfinity;
}
return _count < 2 ? double.NaN : _m2 / _count;
}
}
///
/// Estimates the unbiased population standard deviation from the provided samples.
/// On a dataset of size N will use an N-1 normalizer (Bessel's correction).
/// Returns NaN if data has less than two entries or if any entry is NaN.
///
public double StandardDeviation
{
get
{
if (_lastNaNTimeToLive > 0 || _lastNegInfTimeToLive > 0)
{
return double.NaN;
}
if (_lastPosInfTimeToLive > 0)
{
return double.PositiveInfinity;
}
return _count < 2 ? double.NaN : Math.Sqrt(_m2 / (_count - 1));
}
}
///
/// Evaluates the standard deviation from the provided full population.
/// On a dataset of size N will use an N normalizer and would thus be biased if applied to a subset.
/// Returns NaN if data is empty or if any entry is NaN.
///
public double PopulationStandardDeviation
{
get
{
if (_lastNaNTimeToLive > 0 || _lastNegInfTimeToLive > 0)
{
return double.NaN;
}
if (_lastPosInfTimeToLive > 0)
{
return double.PositiveInfinity;
}
return _count < 2 ? double.NaN : Math.Sqrt(_m2 / _count);
}
}
///
/// Update the running statistics by adding another observed sample (in-place).
///
public void Push(double value)
{
DecrementTimeToLive();
if (double.IsNaN(value))
{
_lastNaNTimeToLive = _windowSize;
Reset(double.PositiveInfinity, double.NegativeInfinity);
return;
}
if (double.IsPositiveInfinity(value))
{
_lastPosInfTimeToLive = _windowSize;
Reset(_min, double.NegativeInfinity);
return;
}
if (double.IsNegativeInfinity(value))
{
_lastNegInfTimeToLive = _windowSize;
Reset(double.PositiveInfinity, _max);
return;
}
if (_count < _windowSize)
{
_oldValues[_count] = value;
_count++;
var d = value - _m1;
var s = d / _count;
var t = d * s * (_count - 1);
_m1 += s;
_m2 += t;
if (value < _min)
{
_min = value;
}
if (value > _max)
{
_max = value;
}
}
else
{
var oldValue = _oldValues[_lastIndex];
var d = value - oldValue;
var s = d / _count;
var oldM1 = _m1;
_m1 += s;
var x = (value - _m1 + oldValue - oldM1);
var t = d * x;
_m2 += t;
_oldValues[_lastIndex] = value;
_lastIndex++;
if (_lastIndex == WindowSize)
{
_lastIndex = 0;
}
_max = value > _max ? value : _oldValues.Maximum();
_min = value < _min ? value : _oldValues.Minimum();
}
}
///
/// Update the running statistics by adding a sequence of observed sample (in-place).
///
public void PushRange(IEnumerable values)
{
foreach (var value in values)
{
Push(value);
}
}
private void DecrementTimeToLive()
{
if (_lastNaNTimeToLive > 0)
{
_lastNaNTimeToLive--;
}
if (_lastPosInfTimeToLive > 0)
{
_lastPosInfTimeToLive--;
}
if (_lastNegInfTimeToLive > 0)
{
_lastNegInfTimeToLive--;
}
}
private void Reset(double min, double max)
{
_totalCountOffset += _count + 1;
_count = 0;
_m1 = 0;
_max = max;
_min = min;
}
}
}