//
// Math.NET Numerics, part of the Math.NET Project
// http://numerics.mathdotnet.com
// http://github.com/mathnet/mathnet-numerics
//
// Copyright (c) 2009-2013 Math.NET
//
// Permission is hereby granted, free of charge, to any person
// obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without
// restriction, including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following
// conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
//
using System;
using System.Collections.Generic;
using IStation.Numerics.Random;
using IStation.Numerics.RootFinding;
using IStation.Numerics.Threading;
namespace IStation.Numerics.Distributions
{
///
/// Continuous Univariate F-distribution, also known as Fisher-Snedecor distribution.
/// For details about this distribution, see
/// Wikipedia - FisherSnedecor distribution.
///
public class FisherSnedecor : IContinuousDistribution
{
System.Random _random;
readonly double _freedom1;
readonly double _freedom2;
///
/// Initializes a new instance of the class.
///
/// The first degree of freedom (d1) of the distribution. Range: d1 > 0.
/// The second degree of freedom (d2) of the distribution. Range: d2 > 0.
public FisherSnedecor(double d1, double d2)
{
if (!IsValidParameterSet(d1, d2))
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
_random = SystemRandomSource.Default;
_freedom1 = d1;
_freedom2 = d2;
}
///
/// Initializes a new instance of the class.
///
/// The first degree of freedom (d1) of the distribution. Range: d1 > 0.
/// The second degree of freedom (d2) of the distribution. Range: d2 > 0.
/// The random number generator which is used to draw random samples.
public FisherSnedecor(double d1, double d2, System.Random randomSource)
{
if (!IsValidParameterSet(d1, d2))
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
_random = randomSource ?? SystemRandomSource.Default;
_freedom1 = d1;
_freedom2 = d2;
}
///
/// A string representation of the distribution.
///
/// a string representation of the distribution.
public override string ToString()
{
return $"FisherSnedecor(d1 = {_freedom1}, d2 = {_freedom2})";
}
///
/// Tests whether the provided values are valid parameters for this distribution.
///
/// The first degree of freedom (d1) of the distribution. Range: d1 > 0.
/// The second degree of freedom (d2) of the distribution. Range: d2 > 0.
public static bool IsValidParameterSet(double d1, double d2)
{
return d1 > 0.0 && d2 > 0.0;
}
///
/// Gets the first degree of freedom (d1) of the distribution. Range: d1 > 0.
///
public double DegreesOfFreedom1 => _freedom1;
///
/// Gets the second degree of freedom (d2) of the distribution. Range: d2 > 0.
///
public double DegreesOfFreedom2 => _freedom2;
///
/// Gets or sets the random number generator which is used to draw random samples.
///
public System.Random RandomSource
{
get => _random;
set => _random = value ?? SystemRandomSource.Default;
}
///
/// Gets the mean of the distribution.
///
public double Mean
{
get
{
if (_freedom2 <= 2)
{
throw new NotSupportedException();
}
return _freedom2/(_freedom2 - 2.0);
}
}
///
/// Gets the variance of the distribution.
///
public double Variance
{
get
{
if (_freedom2 <= 4)
{
throw new NotSupportedException();
}
return (2.0*_freedom2*_freedom2*(_freedom1 + _freedom2 - 2.0))/(_freedom1*(_freedom2 - 2.0)*(_freedom2 - 2.0)*(_freedom2 - 4.0));
}
}
///
/// Gets the standard deviation of the distribution.
///
public double StdDev => Math.Sqrt(Variance);
///
/// Gets the entropy of the distribution.
///
public double Entropy => throw new NotSupportedException();
///
/// Gets the skewness of the distribution.
///
public double Skewness
{
get
{
if (_freedom2 <= 6)
{
throw new NotSupportedException();
}
return (((2.0*_freedom1) + _freedom2 - 2.0)*Math.Sqrt(8.0*(_freedom2 - 4.0)))/((_freedom2 - 6.0)*Math.Sqrt(_freedom1*(_freedom1 + _freedom2 - 2.0)));
}
}
///
/// Gets the mode of the distribution.
///
public double Mode
{
get
{
if (_freedom1 <= 2)
{
throw new NotSupportedException();
}
return (_freedom2*(_freedom1 - 2.0))/(_freedom1*(_freedom2 + 2.0));
}
}
///
/// Gets the median of the distribution.
///
public double Median => throw new NotSupportedException();
///
/// Gets the minimum of the distribution.
///
public double Minimum => 0.0;
///
/// Gets the maximum of the distribution.
///
public double Maximum => double.PositiveInfinity;
///
/// Computes the probability density of the distribution (PDF) at x, i.e. ∂P(X ≤ x)/∂x.
///
/// The location at which to compute the density.
/// the density at .
///
public double Density(double x)
{
return Math.Sqrt(Math.Pow(_freedom1*x, _freedom1)*Math.Pow(_freedom2, _freedom2)/Math.Pow((_freedom1*x) + _freedom2, _freedom1 + _freedom2))/(x*SpecialFunctions.Beta(_freedom1/2.0, _freedom2/2.0));
}
///
/// Computes the log probability density of the distribution (lnPDF) at x, i.e. ln(∂P(X ≤ x)/∂x).
///
/// The location at which to compute the log density.
/// the log density at .
///
public double DensityLn(double x)
{
return Math.Log(Density(x));
}
///
/// Computes the cumulative distribution (CDF) of the distribution at x, i.e. P(X ≤ x).
///
/// The location at which to compute the cumulative distribution function.
/// the cumulative distribution at location .
///
public double CumulativeDistribution(double x)
{
return SpecialFunctions.BetaRegularized(_freedom1/2.0, _freedom2/2.0, _freedom1*x/((_freedom1*x) + _freedom2));
}
///
/// Computes the inverse of the cumulative distribution function (InvCDF) for the distribution
/// at the given probability. This is also known as the quantile or percent point function.
///
/// The location at which to compute the inverse cumulative density.
/// the inverse cumulative density at .
///
/// WARNING: currently not an explicit implementation, hence slow and unreliable.
public double InverseCumulativeDistribution(double p)
{
return InvCDF(_freedom1, _freedom2, p);
}
///
/// Generates a sample from the FisherSnedecor distribution.
///
/// a sample from the distribution.
public double Sample()
{
return SampleUnchecked(_random, _freedom1, _freedom2);
}
///
/// Fills an array with samples generated from the distribution.
///
public void Samples(double[] values)
{
SamplesUnchecked(_random, values, _freedom1, _freedom2);
}
///
/// Generates a sequence of samples from the FisherSnedecor distribution.
///
/// a sequence of samples from the distribution.
public IEnumerable Samples()
{
return SamplesUnchecked(_random, _freedom1, _freedom2);
}
///
/// Generates one sample from the FisherSnedecor distribution without parameter checking.
///
/// The random number generator to use.
/// The first degree of freedom (d1) of the distribution. Range: d1 > 0.
/// The second degree of freedom (d2) of the distribution. Range: d2 > 0.
/// a FisherSnedecor distributed random number.
static double SampleUnchecked(System.Random rnd, double d1, double d2)
{
return (ChiSquared.Sample(rnd, d1)*d2)/(ChiSquared.Sample(rnd, d2)*d1);
}
static void SamplesUnchecked(System.Random rnd, double[] values, double d1, double d2)
{
var values2 = new double[values.Length];
ChiSquared.SamplesUnchecked(rnd, values, d1);
ChiSquared.SamplesUnchecked(rnd, values2, d2);
CommonParallel.For(0, values.Length, 4096, (a, b) =>
{
for (int i = a; i < b; i++)
{
values[i] = (values[i]*d2)/(values2[i]*d1);
}
});
}
static IEnumerable SamplesUnchecked(System.Random rnd, double d1, double d2)
{
while (true)
{
yield return SampleUnchecked(rnd, d1, d2);
}
}
///
/// Computes the probability density of the distribution (PDF) at x, i.e. ∂P(X ≤ x)/∂x.
///
/// The first degree of freedom (d1) of the distribution. Range: d1 > 0.
/// The second degree of freedom (d2) of the distribution. Range: d2 > 0.
/// The location at which to compute the density.
/// the density at .
///
public static double PDF(double d1, double d2, double x)
{
if (d1 <= 0.0 || d2 <= 0.0)
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
return Math.Sqrt(Math.Pow(d1*x, d1)*Math.Pow(d2, d2)/Math.Pow((d1*x) + d2, d1 + d2))/(x*SpecialFunctions.Beta(d1/2.0, d2/2.0));
}
///
/// Computes the log probability density of the distribution (lnPDF) at x, i.e. ln(∂P(X ≤ x)/∂x).
///
/// The first degree of freedom (d1) of the distribution. Range: d1 > 0.
/// The second degree of freedom (d2) of the distribution. Range: d2 > 0.
/// The location at which to compute the density.
/// the log density at .
///
public static double PDFLn(double d1, double d2, double x)
{
return Math.Log(PDF(d1, d2, x));
}
///
/// Computes the cumulative distribution (CDF) of the distribution at x, i.e. P(X ≤ x).
///
/// The location at which to compute the cumulative distribution function.
/// The first degree of freedom (d1) of the distribution. Range: d1 > 0.
/// The second degree of freedom (d2) of the distribution. Range: d2 > 0.
/// the cumulative distribution at location .
///
public static double CDF(double d1, double d2, double x)
{
if (d1 <= 0.0 || d2 <= 0.0)
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
return SpecialFunctions.BetaRegularized(d1/2.0, d2/2.0, d1*x/(d1*x + d2));
}
///
/// Computes the inverse of the cumulative distribution function (InvCDF) for the distribution
/// at the given probability. This is also known as the quantile or percent point function.
///
/// The location at which to compute the inverse cumulative density.
/// The first degree of freedom (d1) of the distribution. Range: d1 > 0.
/// The second degree of freedom (d2) of the distribution. Range: d2 > 0.
/// the inverse cumulative density at .
///
/// WARNING: currently not an explicit implementation, hence slow and unreliable.
public static double InvCDF(double d1, double d2, double p)
{
if (d1 <= 0.0 || d2 <= 0.0)
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
return Brent.FindRoot(
x => SpecialFunctions.BetaRegularized(d1/2.0, d2/2.0, d1*x/(d1*x + d2)) - p,
0, 1000, accuracy: 1e-12);
}
///
/// Generates a sample from the distribution.
///
/// The random number generator to use.
/// The first degree of freedom (d1) of the distribution. Range: d1 > 0.
/// The second degree of freedom (d2) of the distribution. Range: d2 > 0.
/// a sample from the distribution.
public static double Sample(System.Random rnd, double d1, double d2)
{
if (d1 <= 0.0 || d2 <= 0.0)
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
return SampleUnchecked(rnd, d1, d2);
}
///
/// Generates a sequence of samples from the distribution.
///
/// The random number generator to use.
/// The first degree of freedom (d1) of the distribution. Range: d1 > 0.
/// The second degree of freedom (d2) of the distribution. Range: d2 > 0.
/// a sequence of samples from the distribution.
public static IEnumerable Samples(System.Random rnd, double d1, double d2)
{
if (d1 <= 0.0 || d2 <= 0.0)
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
return SamplesUnchecked(rnd, d1, d2);
}
///
/// Fills an array with samples generated from the distribution.
///
/// The random number generator to use.
/// The array to fill with the samples.
/// The first degree of freedom (d1) of the distribution. Range: d1 > 0.
/// The second degree of freedom (d2) of the distribution. Range: d2 > 0.
/// a sequence of samples from the distribution.
public static void Samples(System.Random rnd, double[] values, double d1, double d2)
{
if (d1 <= 0.0 || d2 <= 0.0)
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
SamplesUnchecked(rnd, values, d1, d2);
}
///
/// Generates a sample from the distribution.
///
/// The first degree of freedom (d1) of the distribution. Range: d1 > 0.
/// The second degree of freedom (d2) of the distribution. Range: d2 > 0.
/// a sample from the distribution.
public static double Sample(double d1, double d2)
{
if (d1 <= 0.0 || d2 <= 0.0)
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
return SampleUnchecked(SystemRandomSource.Default, d1, d2);
}
///
/// Generates a sequence of samples from the distribution.
///
/// The first degree of freedom (d1) of the distribution. Range: d1 > 0.
/// The second degree of freedom (d2) of the distribution. Range: d2 > 0.
/// a sequence of samples from the distribution.
public static IEnumerable Samples(double d1, double d2)
{
if (d1 <= 0.0 || d2 <= 0.0)
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
return SamplesUnchecked(SystemRandomSource.Default, d1, d2);
}
///
/// Fills an array with samples generated from the distribution.
///
/// The array to fill with the samples.
/// The first degree of freedom (d1) of the distribution. Range: d1 > 0.
/// The second degree of freedom (d2) of the distribution. Range: d2 > 0.
/// a sequence of samples from the distribution.
public static void Samples(double[] values, double d1, double d2)
{
if (d1 <= 0.0 || d2 <= 0.0)
{
throw new ArgumentException("Invalid parametrization for the distribution.");
}
SamplesUnchecked(SystemRandomSource.Default, values, d1, d2);
}
}
}