// // Math.NET Numerics, part of the Math.NET Project // http://numerics.mathdotnet.com // http://github.com/mathnet/mathnet-numerics // // Copyright (c) 2009-2013 Math.NET // // Permission is hereby granted, free of charge, to any person // obtaining a copy of this software and associated documentation // files (the "Software"), to deal in the Software without // restriction, including without limitation the rights to use, // copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the // Software is furnished to do so, subject to the following // conditions: // // The above copyright notice and this permission notice shall be // included in all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES // OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT // HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, // WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR // OTHER DEALINGS IN THE SOFTWARE. // using System; using System.Collections.Generic; using IStation.Numerics.Random; using IStation.Numerics.RootFinding; using IStation.Numerics.Threading; namespace IStation.Numerics.Distributions { /// /// Continuous Univariate F-distribution, also known as Fisher-Snedecor distribution. /// For details about this distribution, see /// Wikipedia - FisherSnedecor distribution. /// public class FisherSnedecor : IContinuousDistribution { System.Random _random; readonly double _freedom1; readonly double _freedom2; /// /// Initializes a new instance of the class. /// /// The first degree of freedom (d1) of the distribution. Range: d1 > 0. /// The second degree of freedom (d2) of the distribution. Range: d2 > 0. public FisherSnedecor(double d1, double d2) { if (!IsValidParameterSet(d1, d2)) { throw new ArgumentException("Invalid parametrization for the distribution."); } _random = SystemRandomSource.Default; _freedom1 = d1; _freedom2 = d2; } /// /// Initializes a new instance of the class. /// /// The first degree of freedom (d1) of the distribution. Range: d1 > 0. /// The second degree of freedom (d2) of the distribution. Range: d2 > 0. /// The random number generator which is used to draw random samples. public FisherSnedecor(double d1, double d2, System.Random randomSource) { if (!IsValidParameterSet(d1, d2)) { throw new ArgumentException("Invalid parametrization for the distribution."); } _random = randomSource ?? SystemRandomSource.Default; _freedom1 = d1; _freedom2 = d2; } /// /// A string representation of the distribution. /// /// a string representation of the distribution. public override string ToString() { return $"FisherSnedecor(d1 = {_freedom1}, d2 = {_freedom2})"; } /// /// Tests whether the provided values are valid parameters for this distribution. /// /// The first degree of freedom (d1) of the distribution. Range: d1 > 0. /// The second degree of freedom (d2) of the distribution. Range: d2 > 0. public static bool IsValidParameterSet(double d1, double d2) { return d1 > 0.0 && d2 > 0.0; } /// /// Gets the first degree of freedom (d1) of the distribution. Range: d1 > 0. /// public double DegreesOfFreedom1 => _freedom1; /// /// Gets the second degree of freedom (d2) of the distribution. Range: d2 > 0. /// public double DegreesOfFreedom2 => _freedom2; /// /// Gets or sets the random number generator which is used to draw random samples. /// public System.Random RandomSource { get => _random; set => _random = value ?? SystemRandomSource.Default; } /// /// Gets the mean of the distribution. /// public double Mean { get { if (_freedom2 <= 2) { throw new NotSupportedException(); } return _freedom2/(_freedom2 - 2.0); } } /// /// Gets the variance of the distribution. /// public double Variance { get { if (_freedom2 <= 4) { throw new NotSupportedException(); } return (2.0*_freedom2*_freedom2*(_freedom1 + _freedom2 - 2.0))/(_freedom1*(_freedom2 - 2.0)*(_freedom2 - 2.0)*(_freedom2 - 4.0)); } } /// /// Gets the standard deviation of the distribution. /// public double StdDev => Math.Sqrt(Variance); /// /// Gets the entropy of the distribution. /// public double Entropy => throw new NotSupportedException(); /// /// Gets the skewness of the distribution. /// public double Skewness { get { if (_freedom2 <= 6) { throw new NotSupportedException(); } return (((2.0*_freedom1) + _freedom2 - 2.0)*Math.Sqrt(8.0*(_freedom2 - 4.0)))/((_freedom2 - 6.0)*Math.Sqrt(_freedom1*(_freedom1 + _freedom2 - 2.0))); } } /// /// Gets the mode of the distribution. /// public double Mode { get { if (_freedom1 <= 2) { throw new NotSupportedException(); } return (_freedom2*(_freedom1 - 2.0))/(_freedom1*(_freedom2 + 2.0)); } } /// /// Gets the median of the distribution. /// public double Median => throw new NotSupportedException(); /// /// Gets the minimum of the distribution. /// public double Minimum => 0.0; /// /// Gets the maximum of the distribution. /// public double Maximum => double.PositiveInfinity; /// /// Computes the probability density of the distribution (PDF) at x, i.e. ∂P(X ≤ x)/∂x. /// /// The location at which to compute the density. /// the density at . /// public double Density(double x) { return Math.Sqrt(Math.Pow(_freedom1*x, _freedom1)*Math.Pow(_freedom2, _freedom2)/Math.Pow((_freedom1*x) + _freedom2, _freedom1 + _freedom2))/(x*SpecialFunctions.Beta(_freedom1/2.0, _freedom2/2.0)); } /// /// Computes the log probability density of the distribution (lnPDF) at x, i.e. ln(∂P(X ≤ x)/∂x). /// /// The location at which to compute the log density. /// the log density at . /// public double DensityLn(double x) { return Math.Log(Density(x)); } /// /// Computes the cumulative distribution (CDF) of the distribution at x, i.e. P(X ≤ x). /// /// The location at which to compute the cumulative distribution function. /// the cumulative distribution at location . /// public double CumulativeDistribution(double x) { return SpecialFunctions.BetaRegularized(_freedom1/2.0, _freedom2/2.0, _freedom1*x/((_freedom1*x) + _freedom2)); } /// /// Computes the inverse of the cumulative distribution function (InvCDF) for the distribution /// at the given probability. This is also known as the quantile or percent point function. /// /// The location at which to compute the inverse cumulative density. /// the inverse cumulative density at . /// /// WARNING: currently not an explicit implementation, hence slow and unreliable. public double InverseCumulativeDistribution(double p) { return InvCDF(_freedom1, _freedom2, p); } /// /// Generates a sample from the FisherSnedecor distribution. /// /// a sample from the distribution. public double Sample() { return SampleUnchecked(_random, _freedom1, _freedom2); } /// /// Fills an array with samples generated from the distribution. /// public void Samples(double[] values) { SamplesUnchecked(_random, values, _freedom1, _freedom2); } /// /// Generates a sequence of samples from the FisherSnedecor distribution. /// /// a sequence of samples from the distribution. public IEnumerable Samples() { return SamplesUnchecked(_random, _freedom1, _freedom2); } /// /// Generates one sample from the FisherSnedecor distribution without parameter checking. /// /// The random number generator to use. /// The first degree of freedom (d1) of the distribution. Range: d1 > 0. /// The second degree of freedom (d2) of the distribution. Range: d2 > 0. /// a FisherSnedecor distributed random number. static double SampleUnchecked(System.Random rnd, double d1, double d2) { return (ChiSquared.Sample(rnd, d1)*d2)/(ChiSquared.Sample(rnd, d2)*d1); } static void SamplesUnchecked(System.Random rnd, double[] values, double d1, double d2) { var values2 = new double[values.Length]; ChiSquared.SamplesUnchecked(rnd, values, d1); ChiSquared.SamplesUnchecked(rnd, values2, d2); CommonParallel.For(0, values.Length, 4096, (a, b) => { for (int i = a; i < b; i++) { values[i] = (values[i]*d2)/(values2[i]*d1); } }); } static IEnumerable SamplesUnchecked(System.Random rnd, double d1, double d2) { while (true) { yield return SampleUnchecked(rnd, d1, d2); } } /// /// Computes the probability density of the distribution (PDF) at x, i.e. ∂P(X ≤ x)/∂x. /// /// The first degree of freedom (d1) of the distribution. Range: d1 > 0. /// The second degree of freedom (d2) of the distribution. Range: d2 > 0. /// The location at which to compute the density. /// the density at . /// public static double PDF(double d1, double d2, double x) { if (d1 <= 0.0 || d2 <= 0.0) { throw new ArgumentException("Invalid parametrization for the distribution."); } return Math.Sqrt(Math.Pow(d1*x, d1)*Math.Pow(d2, d2)/Math.Pow((d1*x) + d2, d1 + d2))/(x*SpecialFunctions.Beta(d1/2.0, d2/2.0)); } /// /// Computes the log probability density of the distribution (lnPDF) at x, i.e. ln(∂P(X ≤ x)/∂x). /// /// The first degree of freedom (d1) of the distribution. Range: d1 > 0. /// The second degree of freedom (d2) of the distribution. Range: d2 > 0. /// The location at which to compute the density. /// the log density at . /// public static double PDFLn(double d1, double d2, double x) { return Math.Log(PDF(d1, d2, x)); } /// /// Computes the cumulative distribution (CDF) of the distribution at x, i.e. P(X ≤ x). /// /// The location at which to compute the cumulative distribution function. /// The first degree of freedom (d1) of the distribution. Range: d1 > 0. /// The second degree of freedom (d2) of the distribution. Range: d2 > 0. /// the cumulative distribution at location . /// public static double CDF(double d1, double d2, double x) { if (d1 <= 0.0 || d2 <= 0.0) { throw new ArgumentException("Invalid parametrization for the distribution."); } return SpecialFunctions.BetaRegularized(d1/2.0, d2/2.0, d1*x/(d1*x + d2)); } /// /// Computes the inverse of the cumulative distribution function (InvCDF) for the distribution /// at the given probability. This is also known as the quantile or percent point function. /// /// The location at which to compute the inverse cumulative density. /// The first degree of freedom (d1) of the distribution. Range: d1 > 0. /// The second degree of freedom (d2) of the distribution. Range: d2 > 0. /// the inverse cumulative density at . /// /// WARNING: currently not an explicit implementation, hence slow and unreliable. public static double InvCDF(double d1, double d2, double p) { if (d1 <= 0.0 || d2 <= 0.0) { throw new ArgumentException("Invalid parametrization for the distribution."); } return Brent.FindRoot( x => SpecialFunctions.BetaRegularized(d1/2.0, d2/2.0, d1*x/(d1*x + d2)) - p, 0, 1000, accuracy: 1e-12); } /// /// Generates a sample from the distribution. /// /// The random number generator to use. /// The first degree of freedom (d1) of the distribution. Range: d1 > 0. /// The second degree of freedom (d2) of the distribution. Range: d2 > 0. /// a sample from the distribution. public static double Sample(System.Random rnd, double d1, double d2) { if (d1 <= 0.0 || d2 <= 0.0) { throw new ArgumentException("Invalid parametrization for the distribution."); } return SampleUnchecked(rnd, d1, d2); } /// /// Generates a sequence of samples from the distribution. /// /// The random number generator to use. /// The first degree of freedom (d1) of the distribution. Range: d1 > 0. /// The second degree of freedom (d2) of the distribution. Range: d2 > 0. /// a sequence of samples from the distribution. public static IEnumerable Samples(System.Random rnd, double d1, double d2) { if (d1 <= 0.0 || d2 <= 0.0) { throw new ArgumentException("Invalid parametrization for the distribution."); } return SamplesUnchecked(rnd, d1, d2); } /// /// Fills an array with samples generated from the distribution. /// /// The random number generator to use. /// The array to fill with the samples. /// The first degree of freedom (d1) of the distribution. Range: d1 > 0. /// The second degree of freedom (d2) of the distribution. Range: d2 > 0. /// a sequence of samples from the distribution. public static void Samples(System.Random rnd, double[] values, double d1, double d2) { if (d1 <= 0.0 || d2 <= 0.0) { throw new ArgumentException("Invalid parametrization for the distribution."); } SamplesUnchecked(rnd, values, d1, d2); } /// /// Generates a sample from the distribution. /// /// The first degree of freedom (d1) of the distribution. Range: d1 > 0. /// The second degree of freedom (d2) of the distribution. Range: d2 > 0. /// a sample from the distribution. public static double Sample(double d1, double d2) { if (d1 <= 0.0 || d2 <= 0.0) { throw new ArgumentException("Invalid parametrization for the distribution."); } return SampleUnchecked(SystemRandomSource.Default, d1, d2); } /// /// Generates a sequence of samples from the distribution. /// /// The first degree of freedom (d1) of the distribution. Range: d1 > 0. /// The second degree of freedom (d2) of the distribution. Range: d2 > 0. /// a sequence of samples from the distribution. public static IEnumerable Samples(double d1, double d2) { if (d1 <= 0.0 || d2 <= 0.0) { throw new ArgumentException("Invalid parametrization for the distribution."); } return SamplesUnchecked(SystemRandomSource.Default, d1, d2); } /// /// Fills an array with samples generated from the distribution. /// /// The array to fill with the samples. /// The first degree of freedom (d1) of the distribution. Range: d1 > 0. /// The second degree of freedom (d2) of the distribution. Range: d2 > 0. /// a sequence of samples from the distribution. public static void Samples(double[] values, double d1, double d2) { if (d1 <= 0.0 || d2 <= 0.0) { throw new ArgumentException("Invalid parametrization for the distribution."); } SamplesUnchecked(SystemRandomSource.Default, values, d1, d2); } } }