// // Math.NET Numerics, part of the Math.NET Project // http://numerics.mathdotnet.com // http://github.com/mathnet/mathnet-numerics // // Copyright (c) 2009-2013 Math.NET // // Permission is hereby granted, free of charge, to any person // obtaining a copy of this software and associated documentation // files (the "Software"), to deal in the Software without // restriction, including without limitation the rights to use, // copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the // Software is furnished to do so, subject to the following // conditions: // // The above copyright notice and this permission notice shall be // included in all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES // OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT // HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, // WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR // OTHER DEALINGS IN THE SOFTWARE. // using System; using IStation.Numerics.LinearAlgebra; using IStation.Numerics.LinearAlgebra.Double; using IStation.Numerics.Random; namespace IStation.Numerics.Distributions { /// /// Multivariate Matrix-valued Normal distributions. The distribution /// is parameterized by a mean matrix (M), a covariance matrix for the rows (V) and a covariance matrix /// for the columns (K). If the dimension of M is d-by-m then V is d-by-d and K is m-by-m. /// Wikipedia - MatrixNormal distribution. /// public class MatrixNormal : IDistribution { System.Random _random; /// /// The mean of the matrix normal distribution. /// readonly Matrix _m; /// /// The covariance matrix for the rows. /// readonly Matrix _v; /// /// The covariance matrix for the columns. /// readonly Matrix _k; /// /// Initializes a new instance of the class. /// /// The mean of the matrix normal. /// The covariance matrix for the rows. /// The covariance matrix for the columns. /// If the dimensions of the mean and two covariance matrices don't match. public MatrixNormal(Matrix m, Matrix v, Matrix k) { if (Control.CheckDistributionParameters && !IsValidParameterSet(m, v, k)) { throw new ArgumentException("Invalid parametrization for the distribution."); } _random = SystemRandomSource.Default; _m = m; _v = v; _k = k; } /// /// Initializes a new instance of the class. /// /// The mean of the matrix normal. /// The covariance matrix for the rows. /// The covariance matrix for the columns. /// The random number generator which is used to draw random samples. /// If the dimensions of the mean and two covariance matrices don't match. public MatrixNormal(Matrix m, Matrix v, Matrix k, System.Random randomSource) { if (Control.CheckDistributionParameters && !IsValidParameterSet(m, v, k)) { throw new ArgumentException("Invalid parametrization for the distribution."); } _random = randomSource ?? SystemRandomSource.Default; _m = m; _v = v; _k = k; } /// /// Returns a that represents this instance. /// /// /// A that represents this instance. /// public override string ToString() { return $"MatrixNormal(Rows = {_m.RowCount}, Columns = {_m.ColumnCount})"; } /// /// Tests whether the provided values are valid parameters for this distribution. /// /// The mean of the matrix normal. /// The covariance matrix for the rows. /// The covariance matrix for the columns. public static bool IsValidParameterSet(Matrix m, Matrix v, Matrix k) { var n = m.RowCount; var p = m.ColumnCount; if (v.ColumnCount != n || v.RowCount != n) { return false; } if (k.ColumnCount != p || k.RowCount != p) { return false; } for (var i = 0; i < v.RowCount; i++) { if (v.At(i, i) <= 0) { return false; } } for (var i = 0; i < k.RowCount; i++) { if (k.At(i, i) <= 0) { return false; } } return true; } /// /// Gets the mean. (M) /// /// The mean of the distribution. public Matrix Mean => _m; /// /// Gets the row covariance. (V) /// /// The row covariance. public Matrix RowCovariance => _v; /// /// Gets the column covariance. (K) /// /// The column covariance. public Matrix ColumnCovariance => _k; /// /// Gets or sets the random number generator which is used to draw random samples. /// public System.Random RandomSource { get => _random; set => _random = value ?? SystemRandomSource.Default; } /// /// Evaluates the probability density function for the matrix normal distribution. /// /// The matrix at which to evaluate the density at. /// the density at /// If the argument does not have the correct dimensions. public double Density(Matrix x) { if (x.RowCount != _m.RowCount || x.ColumnCount != _m.ColumnCount) { throw Matrix.DimensionsDontMatch(x, _m, "x"); } var a = x - _m; var cholV = _v.Cholesky(); var cholK = _k.Cholesky(); return Math.Exp(-0.5*cholK.Solve(a.Transpose()*cholV.Solve(a)).Trace()) /Math.Pow(2.0*Constants.Pi, x.RowCount*x.ColumnCount/2.0) /Math.Pow(cholK.Determinant, x.RowCount/2.0) /Math.Pow(cholV.Determinant, x.ColumnCount/2.0); } /// /// Samples a matrix normal distributed random variable. /// /// A random number from this distribution. public Matrix Sample() { return Sample(_random, _m, _v, _k); } /// /// Samples a matrix normal distributed random variable. /// /// The random number generator to use. /// The mean of the matrix normal. /// The covariance matrix for the rows. /// The covariance matrix for the columns. /// If the dimensions of the mean and two covariance matrices don't match. /// a sequence of samples from the distribution. public static Matrix Sample(System.Random rnd, Matrix m, Matrix v, Matrix k) { if (Control.CheckDistributionParameters && !IsValidParameterSet(m, v, k)) { throw new ArgumentException("Invalid parametrization for the distribution."); } var n = m.RowCount; var p = m.ColumnCount; // Compute the Kronecker product of V and K, this is the covariance matrix for the stacked matrix. var vki = v.KroneckerProduct(k.Inverse()); // Sample a vector valued random variable with VKi as the covariance. var vector = SampleVectorNormal(rnd, new DenseVector(n*p), vki); // Unstack the vector v and add the mean. var r = m.Clone(); for (var i = 0; i < n; i++) { for (var j = 0; j < p; j++) { r.At(i, j, r.At(i, j) + vector[(j*n) + i]); } } return r; } /// /// Samples a vector normal distributed random variable. /// /// The random number generator to use. /// The mean of the vector normal distribution. /// The covariance matrix of the vector normal distribution. /// a sequence of samples from defined distribution. static Vector SampleVectorNormal(System.Random rnd, Vector mean, Matrix covariance) { var chol = covariance.Cholesky(); // Sample a standard normal variable. var v = Vector.Build.Random(mean.Count, new Normal(rnd)); // Return the transformed variable. return mean + (chol.Factor*v); } } }