// // Math.NET Numerics, part of the Math.NET Project // http://numerics.mathdotnet.com // http://github.com/mathnet/mathnet-numerics // // Copyright (c) 2009-2017 Math.NET // // Permission is hereby granted, free of charge, to any person // obtaining a copy of this software and associated documentation // files (the "Software"), to deal in the Software without // restriction, including without limitation the rights to use, // copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the // Software is furnished to do so, subject to the following // conditions: // // The above copyright notice and this permission notice shall be // included in all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES // OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT // HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, // WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR // OTHER DEALINGS IN THE SOFTWARE. // using System; using IStation.Numerics.LinearAlgebra; using IStation.Numerics.Optimization.ObjectiveFunctions; namespace IStation.Numerics.Optimization { public static class ObjectiveFunction { /// /// Objective function where neither Gradient nor Hessian is available. /// public static IObjectiveFunction Value(Func, double> function) { return new ValueObjectiveFunction(function); } /// /// Objective function where the Gradient is available. Greedy evaluation. /// public static IObjectiveFunction Gradient(Func, Tuple>> function) { return new GradientObjectiveFunction(function); } /// /// Objective function where the Gradient is available. Lazy evaluation. /// public static IObjectiveFunction Gradient(Func, double> function, Func, Vector> gradient) { return new LazyObjectiveFunction(function, gradient: gradient); } /// /// Objective function where the Hessian is available. Greedy evaluation. /// public static IObjectiveFunction Hessian(Func, Tuple>> function) { return new HessianObjectiveFunction(function); } /// /// Objective function where the Hessian is available. Lazy evaluation. /// public static IObjectiveFunction Hessian(Func, double> function, Func, Matrix> hessian) { return new LazyObjectiveFunction(function, hessian: hessian); } /// /// Objective function where both Gradient and Hessian are available. Greedy evaluation. /// public static IObjectiveFunction GradientHessian(Func, Tuple, Matrix>> function) { return new GradientHessianObjectiveFunction(function); } /// /// Objective function where both Gradient and Hessian are available. Lazy evaluation. /// public static IObjectiveFunction GradientHessian(Func, double> function, Func, Vector> gradient, Func, Matrix> hessian) { return new LazyObjectiveFunction(function, gradient: gradient, hessian: hessian); } /// /// Objective function where neither first nor second derivative is available. /// public static IScalarObjectiveFunction ScalarValue(Func function) { return new ScalarValueObjectiveFunction(function); } /// /// Objective function where the first derivative is available. /// public static IScalarObjectiveFunction ScalarDerivative(Func function, Func derivative) { return new ScalarObjectiveFunction(function, derivative); } /// /// Objective function where the first and second derivatives are available. /// public static IScalarObjectiveFunction ScalarSecondDerivative(Func function, Func derivative, Func secondDerivative) { return new ScalarObjectiveFunction(function, derivative, secondDerivative); } /// /// objective model with a user supplied jacobian for non-linear least squares regression. /// public static IObjectiveModel NonlinearModel(Func, Vector, Vector> function, Func, Vector, Matrix> derivatives, Vector observedX, Vector observedY, Vector weight = null) { var objective = new NonlinearObjectiveFunction(function, derivatives); objective.SetObserved(observedX, observedY, weight); return objective; } /// /// Objective model for non-linear least squares regression. /// public static IObjectiveModel NonlinearModel(Func, Vector, Vector> function, Vector observedX, Vector observedY, Vector weight = null, int accuracyOrder = 2) { var objective = new NonlinearObjectiveFunction(function, accuracyOrder: accuracyOrder); objective.SetObserved(observedX, observedY, weight); return objective; } /// /// Objective model with a user supplied jacobian for non-linear least squares regression. /// public static IObjectiveModel NonlinearModel(Func, double, double> function, Func, double, Vector> derivatives, Vector observedX, Vector observedY, Vector weight = null) { Vector func(Vector point, Vector x) { var functionValues = CreateVector.Dense(x.Count); for (int i = 0; i < x.Count; i++) { functionValues[i] = function(point, x[i]); } return functionValues; } Matrix prime(Vector point, Vector x) { var derivativeValues = CreateMatrix.Dense(x.Count, point.Count); for (int i = 0; i < x.Count; i++) { derivativeValues.SetRow(i, derivatives(point, x[i])); } return derivativeValues; } var objective = new NonlinearObjectiveFunction(func, prime); objective.SetObserved(observedX, observedY, weight); return objective; } /// /// Objective model for non-linear least squares regression. /// public static IObjectiveModel NonlinearModel(Func, double, double> function, Vector observedX, Vector observedY, Vector weight = null, int accuracyOrder = 2) { Vector func(Vector point, Vector x) { var functionValues = CreateVector.Dense(x.Count); for (int i = 0; i < x.Count; i++) { functionValues[i] = function(point, x[i]); } return functionValues; } var objective = new NonlinearObjectiveFunction(func, accuracyOrder: accuracyOrder); objective.SetObserved(observedX, observedY, weight); return objective; } /// /// Objective function with a user supplied jacobian for nonlinear least squares regression. /// public static IObjectiveFunction NonlinearFunction(Func, Vector, Vector> function, Func, Vector, Matrix> derivatives, Vector observedX, Vector observedY, Vector weight = null) { var objective = new NonlinearObjectiveFunction(function, derivatives); objective.SetObserved(observedX, observedY, weight); return objective.ToObjectiveFunction(); } /// /// Objective function for nonlinear least squares regression. /// The numerical jacobian with accuracy order is used. /// public static IObjectiveFunction NonlinearFunction(Func, Vector, Vector> function, Vector observedX, Vector observedY, Vector weight = null, int accuracyOrder = 2) { var objective = new NonlinearObjectiveFunction(function, null, accuracyOrder: accuracyOrder); objective.SetObserved(observedX, observedY, weight); return objective.ToObjectiveFunction(); } } }