//
// Math.NET Numerics, part of the Math.NET Project
// http://numerics.mathdotnet.com
// http://github.com/mathnet/mathnet-numerics
//
// Copyright (c) 2009-2017 Math.NET
//
// Permission is hereby granted, free of charge, to any person
// obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without
// restriction, including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following
// conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
//
using System;
using IStation.Numerics.LinearAlgebra;
using IStation.Numerics.Optimization.ObjectiveFunctions;
namespace IStation.Numerics.Optimization
{
public static class ObjectiveFunction
{
///
/// Objective function where neither Gradient nor Hessian is available.
///
public static IObjectiveFunction Value(Func, double> function)
{
return new ValueObjectiveFunction(function);
}
///
/// Objective function where the Gradient is available. Greedy evaluation.
///
public static IObjectiveFunction Gradient(Func, Tuple>> function)
{
return new GradientObjectiveFunction(function);
}
///
/// Objective function where the Gradient is available. Lazy evaluation.
///
public static IObjectiveFunction Gradient(Func, double> function, Func, Vector> gradient)
{
return new LazyObjectiveFunction(function, gradient: gradient);
}
///
/// Objective function where the Hessian is available. Greedy evaluation.
///
public static IObjectiveFunction Hessian(Func, Tuple>> function)
{
return new HessianObjectiveFunction(function);
}
///
/// Objective function where the Hessian is available. Lazy evaluation.
///
public static IObjectiveFunction Hessian(Func, double> function, Func, Matrix> hessian)
{
return new LazyObjectiveFunction(function, hessian: hessian);
}
///
/// Objective function where both Gradient and Hessian are available. Greedy evaluation.
///
public static IObjectiveFunction GradientHessian(Func, Tuple, Matrix>> function)
{
return new GradientHessianObjectiveFunction(function);
}
///
/// Objective function where both Gradient and Hessian are available. Lazy evaluation.
///
public static IObjectiveFunction GradientHessian(Func, double> function, Func, Vector> gradient, Func, Matrix> hessian)
{
return new LazyObjectiveFunction(function, gradient: gradient, hessian: hessian);
}
///
/// Objective function where neither first nor second derivative is available.
///
public static IScalarObjectiveFunction ScalarValue(Func function)
{
return new ScalarValueObjectiveFunction(function);
}
///
/// Objective function where the first derivative is available.
///
public static IScalarObjectiveFunction ScalarDerivative(Func function, Func derivative)
{
return new ScalarObjectiveFunction(function, derivative);
}
///
/// Objective function where the first and second derivatives are available.
///
public static IScalarObjectiveFunction ScalarSecondDerivative(Func function, Func derivative, Func secondDerivative)
{
return new ScalarObjectiveFunction(function, derivative, secondDerivative);
}
///
/// objective model with a user supplied jacobian for non-linear least squares regression.
///
public static IObjectiveModel NonlinearModel(Func, Vector, Vector> function,
Func, Vector, Matrix> derivatives,
Vector observedX, Vector observedY, Vector weight = null)
{
var objective = new NonlinearObjectiveFunction(function, derivatives);
objective.SetObserved(observedX, observedY, weight);
return objective;
}
///
/// Objective model for non-linear least squares regression.
///
public static IObjectiveModel NonlinearModel(Func, Vector, Vector> function,
Vector observedX, Vector observedY, Vector weight = null,
int accuracyOrder = 2)
{
var objective = new NonlinearObjectiveFunction(function, accuracyOrder: accuracyOrder);
objective.SetObserved(observedX, observedY, weight);
return objective;
}
///
/// Objective model with a user supplied jacobian for non-linear least squares regression.
///
public static IObjectiveModel NonlinearModel(Func, double, double> function,
Func, double, Vector> derivatives,
Vector observedX, Vector observedY, Vector weight = null)
{
Vector func(Vector point, Vector x)
{
var functionValues = CreateVector.Dense(x.Count);
for (int i = 0; i < x.Count; i++)
{
functionValues[i] = function(point, x[i]);
}
return functionValues;
}
Matrix prime(Vector point, Vector x)
{
var derivativeValues = CreateMatrix.Dense(x.Count, point.Count);
for (int i = 0; i < x.Count; i++)
{
derivativeValues.SetRow(i, derivatives(point, x[i]));
}
return derivativeValues;
}
var objective = new NonlinearObjectiveFunction(func, prime);
objective.SetObserved(observedX, observedY, weight);
return objective;
}
///
/// Objective model for non-linear least squares regression.
///
public static IObjectiveModel NonlinearModel(Func, double, double> function,
Vector observedX, Vector observedY, Vector weight = null,
int accuracyOrder = 2)
{
Vector func(Vector point, Vector x)
{
var functionValues = CreateVector.Dense(x.Count);
for (int i = 0; i < x.Count; i++)
{
functionValues[i] = function(point, x[i]);
}
return functionValues;
}
var objective = new NonlinearObjectiveFunction(func, accuracyOrder: accuracyOrder);
objective.SetObserved(observedX, observedY, weight);
return objective;
}
///
/// Objective function with a user supplied jacobian for nonlinear least squares regression.
///
public static IObjectiveFunction NonlinearFunction(Func, Vector, Vector> function,
Func, Vector, Matrix> derivatives,
Vector observedX, Vector observedY, Vector weight = null)
{
var objective = new NonlinearObjectiveFunction(function, derivatives);
objective.SetObserved(observedX, observedY, weight);
return objective.ToObjectiveFunction();
}
///
/// Objective function for nonlinear least squares regression.
/// The numerical jacobian with accuracy order is used.
///
public static IObjectiveFunction NonlinearFunction(Func, Vector, Vector> function,
Vector observedX, Vector observedY, Vector weight = null,
int accuracyOrder = 2)
{
var objective = new NonlinearObjectiveFunction(function, null, accuracyOrder: accuracyOrder);
objective.SetObserved(observedX, observedY, weight);
return objective.ToObjectiveFunction();
}
}
}