//
// Math.NET Numerics, part of the Math.NET Project
// https://numerics.mathdotnet.com
//
// Copyright (c) 2009-2018 Math.NET
//
// Permission is hereby granted, free of charge, to any person
// obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without
// restriction, including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following
// conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
//
using System;
using IStation.Numerics.Threading;
using Complex = System.Numerics.Complex;
namespace IStation.Numerics.Providers.FourierTransform.Managed
{
internal partial class ManagedFourierTransformProvider
{
///
/// Sequences with length greater than Math.Sqrt(Int32.MaxValue) + 1
/// will cause k*k in the Bluestein sequence to overflow (GH-286).
///
const int BluesteinSequenceLengthThreshold = 46341;
///
/// Generate the bluestein sequence for the provided problem size.
///
/// Number of samples.
/// Bluestein sequence exp(I*Pi*k^2/N)
private static Complex32[] BluesteinSequence32(int n)
{
double s = Constants.Pi / n;
var sequence = new Complex32[n];
// TODO: benchmark whether the second variation is significantly
// faster than the former one. If not just use the former one always.
if (n > BluesteinSequenceLengthThreshold)
{
for (int k = 0; k < sequence.Length; k++)
{
double t = (s * k) * k;
sequence[k] = new Complex32((float)Math.Cos(t), (float)Math.Sin(t));
}
}
else
{
for (int k = 0; k < sequence.Length; k++)
{
double t = s * (k * k);
sequence[k] = new Complex32((float)Math.Cos(t), (float)Math.Sin(t));
}
}
return sequence;
}
///
/// Generate the bluestein sequence for the provided problem size.
///
/// Number of samples.
/// Bluestein sequence exp(I*Pi*k^2/N)
private static Complex[] BluesteinSequence(int n)
{
double s = Constants.Pi / n;
var sequence = new Complex[n];
// TODO: benchmark whether the second variation is significantly
// faster than the former one. If not just use the former one always.
if (n > BluesteinSequenceLengthThreshold)
{
for (int k = 0; k < sequence.Length; k++)
{
double t = (s * k) * k;
sequence[k] = new Complex(Math.Cos(t), Math.Sin(t));
}
}
else
{
for (int k = 0; k < sequence.Length; k++)
{
double t = s * (k * k);
sequence[k] = new Complex(Math.Cos(t), Math.Sin(t));
}
}
return sequence;
}
///
/// Convolution with the bluestein sequence (Parallel Version).
///
/// Sample Vector.
private static void BluesteinConvolutionParallel(Complex32[] samples)
{
int n = samples.Length;
Complex32[] sequence = BluesteinSequence32(n);
// Padding to power of two >= 2N–1 so we can apply Radix-2 FFT.
int m = ((n << 1) - 1).CeilingToPowerOfTwo();
var b = new Complex32[m];
var a = new Complex32[m];
CommonParallel.Invoke(
() =>
{
// Build and transform padded sequence b_k = exp(I*Pi*k^2/N)
for (int i = 0; i < n; i++)
{
b[i] = sequence[i];
}
for (int i = m - n + 1; i < b.Length; i++)
{
b[i] = sequence[m - i];
}
Radix2Forward(b);
},
() =>
{
// Build and transform padded sequence a_k = x_k * exp(-I*Pi*k^2/N)
for (int i = 0; i < samples.Length; i++)
{
a[i] = sequence[i].Conjugate() * samples[i];
}
Radix2Forward(a);
});
for (int i = 0; i < a.Length; i++)
{
a[i] *= b[i];
}
Radix2InverseParallel(a);
var nbinv = 1.0f / m;
for (int i = 0; i < samples.Length; i++)
{
samples[i] = nbinv * sequence[i].Conjugate() * a[i];
}
}
///
/// Convolution with the bluestein sequence (Parallel Version).
///
/// Sample Vector.
private static void BluesteinConvolutionParallel(Complex[] samples)
{
int n = samples.Length;
Complex[] sequence = BluesteinSequence(n);
// Padding to power of two >= 2N–1 so we can apply Radix-2 FFT.
int m = ((n << 1) - 1).CeilingToPowerOfTwo();
var b = new Complex[m];
var a = new Complex[m];
CommonParallel.Invoke(
() =>
{
// Build and transform padded sequence b_k = exp(I*Pi*k^2/N)
for (int i = 0; i < n; i++)
{
b[i] = sequence[i];
}
for (int i = m - n + 1; i < b.Length; i++)
{
b[i] = sequence[m - i];
}
Radix2Forward(b);
},
() =>
{
// Build and transform padded sequence a_k = x_k * exp(-I*Pi*k^2/N)
for (int i = 0; i < samples.Length; i++)
{
a[i] = sequence[i].Conjugate() * samples[i];
}
Radix2Forward(a);
});
for (int i = 0; i < a.Length; i++)
{
a[i] *= b[i];
}
Radix2InverseParallel(a);
var nbinv = 1.0 / m;
for (int i = 0; i < samples.Length; i++)
{
samples[i] = nbinv * sequence[i].Conjugate() * a[i];
}
}
///
/// Swap the real and imaginary parts of each sample.
///
/// Sample Vector.
private static void SwapRealImaginary(Complex32[] samples)
{
for (int i = 0; i < samples.Length; i++)
{
samples[i] = new Complex32(samples[i].Imaginary, samples[i].Real);
}
}
///
/// Swap the real and imaginary parts of each sample.
///
/// Sample Vector.
private static void SwapRealImaginary(Complex[] samples)
{
for (int i = 0; i < samples.Length; i++)
{
samples[i] = new Complex(samples[i].Imaginary, samples[i].Real);
}
}
///
/// Bluestein generic FFT for arbitrary sized sample vectors.
///
private static void BluesteinForward(Complex[] samples)
{
BluesteinConvolutionParallel(samples);
}
///
/// Bluestein generic FFT for arbitrary sized sample vectors.
///
private static void BluesteinInverse(Complex[] spectrum)
{
SwapRealImaginary(spectrum);
BluesteinConvolutionParallel(spectrum);
SwapRealImaginary(spectrum);
}
///
/// Bluestein generic FFT for arbitrary sized sample vectors.
///
private static void BluesteinForward(Complex32[] samples)
{
BluesteinConvolutionParallel(samples);
}
///
/// Bluestein generic FFT for arbitrary sized sample vectors.
///
private static void BluesteinInverse(Complex32[] spectrum)
{
SwapRealImaginary(spectrum);
BluesteinConvolutionParallel(spectrum);
SwapRealImaginary(spectrum);
}
}
}