//
// Math.NET Numerics, part of the Math.NET Project
// http://numerics.mathdotnet.com
// http://github.com/mathnet/mathnet-numerics
//
// Copyright (c) 2009-2020 Math.NET
//
// Permission is hereby granted, free of charge, to any person
// obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without
// restriction, including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following
// conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
//
using System;
using IStation.Numerics.Threading;
using Complex = System.Numerics.Complex;
using QRMethod = IStation.Numerics.LinearAlgebra.Factorization.QRMethod;
using static System.FormattableString;
namespace IStation.Numerics.Providers.LinearAlgebra.Managed
{
///
/// The managed linear algebra provider.
///
internal partial class ManagedLinearAlgebraProvider
{
///
/// Adds a scaled vector to another: result = y + alpha*x.
///
/// The vector to update.
/// The value to scale by.
/// The vector to add to .
/// The result of the addition.
/// This is similar to the AXPY BLAS routine.
public virtual void AddVectorToScaledVector(float[] y, float alpha, float[] x, float[] result)
{
if (y == null)
{
throw new ArgumentNullException(nameof(y));
}
if (x == null)
{
throw new ArgumentNullException(nameof(x));
}
if (y.Length != x.Length)
{
throw new ArgumentException("All vectors must have the same dimensionality.");
}
if (alpha == 0.0)
{
y.Copy(result);
}
else if (alpha == 1.0)
{
for (int i = 0; i < result.Length; i++)
{
result[i] = y[i] + x[i];
}
}
else
{
for (int i = 0; i < result.Length; i++)
{
result[i] = y[i] + (alpha * x[i]);
}
}
}
///
/// Scales an array. Can be used to scale a vector and a matrix.
///
/// The scalar.
/// The values to scale.
/// This result of the scaling.
/// This is similar to the SCAL BLAS routine.
public virtual void ScaleArray(float alpha, float[] x, float[] result)
{
if (x == null)
{
throw new ArgumentNullException(nameof(x));
}
if (alpha == 0.0)
{
Array.Clear(result, 0, result.Length);
}
else if (alpha == 1.0)
{
x.Copy(result);
}
else
{
for (int i = 0; i < result.Length; i++)
{
result[i] = alpha * x[i];
}
}
}
///
/// Conjugates an array. Can be used to conjugate a vector and a matrix.
///
/// The values to conjugate.
/// This result of the conjugation.
public virtual void ConjugateArray(float[] x, float[] result)
{
if (x == null)
{
throw new ArgumentNullException(nameof(x));
}
if (!ReferenceEquals(x, result))
{
x.CopyTo(result, 0);
}
}
///
/// Computes the dot product of x and y.
///
/// The vector x.
/// The vector y.
/// The dot product of x and y.
/// This is equivalent to the DOT BLAS routine.
public virtual float DotProduct(float[] x, float[] y)
{
if (y == null)
{
throw new ArgumentNullException(nameof(y));
}
if (x == null)
{
throw new ArgumentNullException(nameof(x));
}
if (y.Length != x.Length)
{
throw new ArgumentException("All vectors must have the same dimensionality.");
}
float sum = 0.0f;
for (var index = 0; index < y.Length; index++)
{
sum += y[index]*x[index];
}
return sum;
}
///
/// Does a point wise add of two arrays z = x + y. This can be used
/// to add vectors or matrices.
///
/// The array x.
/// The array y.
/// The result of the addition.
/// There is no equivalent BLAS routine, but many libraries
/// provide optimized (parallel and/or vectorized) versions of this
/// routine.
public virtual void AddArrays(float[] x, float[] y, float[] result)
{
if (y == null)
{
throw new ArgumentNullException(nameof(y));
}
if (x == null)
{
throw new ArgumentNullException(nameof(x));
}
if (result == null)
{
throw new ArgumentNullException(nameof(result));
}
if (y.Length != x.Length || y.Length != result.Length)
{
throw new ArgumentException("All vectors must have the same dimensionality.");
}
for (int i = 0; i < result.Length; i++)
{
result[i] = x[i] + y[i];
}
}
///
/// Does a point wise subtraction of two arrays z = x - y. This can be used
/// to subtract vectors or matrices.
///
/// The array x.
/// The array y.
/// The result of the subtraction.
/// There is no equivalent BLAS routine, but many libraries
/// provide optimized (parallel and/or vectorized) versions of this
/// routine.
public virtual void SubtractArrays(float[] x, float[] y, float[] result)
{
if (y == null)
{
throw new ArgumentNullException(nameof(y));
}
if (x == null)
{
throw new ArgumentNullException(nameof(x));
}
if (result == null)
{
throw new ArgumentNullException(nameof(result));
}
if (y.Length != x.Length || y.Length != result.Length)
{
throw new ArgumentException("All vectors must have the same dimensionality.");
}
for (int i = 0; i < result.Length; i++)
{
result[i] = x[i] - y[i];
}
}
///
/// Does a point wise multiplication of two arrays z = x * y. This can be used
/// to multiple elements of vectors or matrices.
///
/// The array x.
/// The array y.
/// The result of the point wise multiplication.
/// There is no equivalent BLAS routine, but many libraries
/// provide optimized (parallel and/or vectorized) versions of this
/// routine.
public virtual void PointWiseMultiplyArrays(float[] x, float[] y, float[] result)
{
if (y == null)
{
throw new ArgumentNullException(nameof(y));
}
if (x == null)
{
throw new ArgumentNullException(nameof(x));
}
if (result == null)
{
throw new ArgumentNullException(nameof(result));
}
if (y.Length != x.Length || y.Length != result.Length)
{
throw new ArgumentException("All vectors must have the same dimensionality.");
}
for (int i = 0; i < result.Length; i++)
{
result[i] = x[i] * y[i];
}
}
///
/// Does a point wise division of two arrays z = x / y. This can be used
/// to divide elements of vectors or matrices.
///
/// The array x.
/// The array y.
/// The result of the point wise division.
/// There is no equivalent BLAS routine, but many libraries
/// provide optimized (parallel and/or vectorized) versions of this
/// routine.
public virtual void PointWiseDivideArrays(float[] x, float[] y, float[] result)
{
if (y == null)
{
throw new ArgumentNullException(nameof(y));
}
if (x == null)
{
throw new ArgumentNullException(nameof(x));
}
if (result == null)
{
throw new ArgumentNullException(nameof(result));
}
if (y.Length != x.Length || y.Length != result.Length)
{
throw new ArgumentException("All vectors must have the same dimensionality.");
}
CommonParallel.For(0, y.Length, 4096, (a, b) =>
{
for (int i = a; i < b; i++)
{
result[i] = x[i] / y[i];
}
});
}
///
/// Does a point wise power of two arrays z = x ^ y. This can be used
/// to raise elements of vectors or matrices to the powers of another vector or matrix.
///
/// The array x.
/// The array y.
/// The result of the point wise power.
/// There is no equivalent BLAS routine, but many libraries
/// provide optimized (parallel and/or vectorized) versions of this
/// routine.
public virtual void PointWisePowerArrays(float[] x, float[] y, float[] result)
{
if (y == null)
{
throw new ArgumentNullException(nameof(y));
}
if (x == null)
{
throw new ArgumentNullException(nameof(x));
}
if (result == null)
{
throw new ArgumentNullException(nameof(result));
}
if (y.Length != x.Length || y.Length != result.Length)
{
throw new ArgumentException("All vectors must have the same dimensionality.");
}
CommonParallel.For(0, y.Length, 4096, (a, b) =>
{
for (int i = a; i < b; i++)
{
result[i] = (float)Math.Pow(x[i], y[i]);
}
});
}
///
/// Computes the requested of the matrix.
///
/// The type of norm to compute.
/// The number of rows.
/// The number of columns.
/// The matrix to compute the norm from.
///
/// The requested of the matrix.
///
public virtual double MatrixNorm(Norm norm, int rows, int columns, float[] matrix)
{
switch (norm)
{
case Norm.OneNorm:
var norm1 = 0d;
for (var j = 0; j < columns; j++)
{
var s = 0d;
for (var i = 0; i < rows; i++)
{
s += Math.Abs(matrix[(j*rows) + i]);
}
norm1 = Math.Max(norm1, s);
}
return norm1;
case Norm.LargestAbsoluteValue:
var normMax = 0d;
for (var j = 0; j < columns; j++)
{
for (var i = 0; i < rows; i++)
{
normMax = Math.Max(Math.Abs(matrix[(j * rows) + i]), normMax);
}
}
return normMax;
case Norm.InfinityNorm:
var r = new double[rows];
for (var j = 0; j < columns; j++)
{
for (var i = 0; i < rows; i++)
{
r[i] += Math.Abs(matrix[(j * rows) + i]);
}
}
// TODO: reuse
var max = r[0];
for (int i = 0; i < r.Length; i++)
{
if (r[i] > max)
{
max = r[i];
}
}
return max;
case Norm.FrobeniusNorm:
var aat = new float[rows*rows];
MatrixMultiplyWithUpdate(Transpose.DontTranspose, Transpose.Transpose, 1.0f, matrix, rows, columns, matrix, rows, columns, 0.0f, aat);
var normF = 0d;
for (var i = 0; i < rows; i++)
{
normF += Math.Abs(aat[(i * rows) + i]);
}
return Math.Sqrt(normF);
default:
throw new NotSupportedException();
}
}
///
/// Multiples two matrices. result = x * y
///
/// The x matrix.
/// The number of rows in the x matrix.
/// The number of columns in the x matrix.
/// The y matrix.
/// The number of rows in the y matrix.
/// The number of columns in the y matrix.
/// Where to store the result of the multiplication.
/// This is a simplified version of the BLAS GEMM routine with alpha
/// set to 1.0 and beta set to 0.0, and x and y are not transposed.
public virtual void MatrixMultiply(float[] x, int rowsX, int columnsX, float[] y, int rowsY, int columnsY, float[] result)
{
if (x == null)
{
throw new ArgumentNullException(nameof(x));
}
if (y == null)
{
throw new ArgumentNullException(nameof(y));
}
if (result == null)
{
throw new ArgumentNullException(nameof(result));
}
if (columnsX != rowsY)
{
throw new ArgumentOutOfRangeException(Invariant($"columnsA ({columnsX}) != rowsB ({rowsY})"));
}
if (rowsX * columnsX != x.Length)
{
throw new ArgumentOutOfRangeException(Invariant($"rowsA ({rowsX}) * columnsA ({columnsX}) != a.Length ({x.Length})"));
}
if (rowsY * columnsY != y.Length)
{
throw new ArgumentOutOfRangeException(Invariant($"rowsB ({rowsY}) * columnsB ({columnsY}) != b.Length ({y.Length})"));
}
if (rowsX * columnsY != result.Length)
{
throw new ArgumentOutOfRangeException(Invariant($"rowsA ({rowsX}) * columnsB ({columnsY}) != c.Length ({result.Length})"));
}
// handle degenerate cases
Array.Clear(result, 0, result.Length);
// Extract column arrays
var columnDataB = new float[columnsY][];
for (int i = 0; i < columnDataB.Length; i++)
{
var column = new float[rowsY];
GetColumn(Transpose.DontTranspose, i, rowsY, columnsY, y, column);
columnDataB[i] = column;
}
var shouldNotParallelize = rowsX + columnsY + columnsX < Control.ParallelizeOrder || Control.MaxDegreeOfParallelism < 2;
if (shouldNotParallelize)
{
var row = new float[columnsX];
for (int i = 0; i < rowsX; i++)
{
GetRow(Transpose.DontTranspose, i, rowsX, columnsX, x, row);
for (int j = 0; j < columnsY; j++)
{
var col = columnDataB[j];
float sum = 0;
for (int ii = 0; ii < row.Length; ii++)
{
sum += row[ii] * col[ii];
}
result[j * rowsX + i] += 1.0f * sum;
}
}
}
else
{
CommonParallel.For(0, rowsX, 1, (u, v) =>
{
var row = new float[columnsX];
for (int i = u; i < v; i++)
{
GetRow(Transpose.DontTranspose, i, rowsX, columnsX, x, row);
for (int j = 0; j < columnsY; j++)
{
var column = columnDataB[j];
float sum = 0;
for (int ii = 0; ii < row.Length; ii++)
{
sum += row[ii] * column[ii];
}
result[j * rowsX + i] += 1.0f * sum;
}
}
});
}
}
///
/// Multiplies two matrices and updates another with the result. c = alpha*op(a)*op(b) + beta*c
///
/// How to transpose the matrix.
/// How to transpose the matrix.
/// The value to scale matrix.
/// The a matrix.
/// The number of rows in the matrix.
/// The number of columns in the matrix.
/// The b matrix
/// The number of rows in the matrix.
/// The number of columns in the matrix.
/// The value to scale the matrix.
/// The c matrix.
public virtual void MatrixMultiplyWithUpdate(Transpose transposeA, Transpose transposeB, float alpha, float[] a, int rowsA, int columnsA, float[] b, int rowsB, int columnsB, float beta, float[] c)
{
if (a == null)
{
throw new ArgumentNullException(nameof(a));
}
if (b == null)
{
throw new ArgumentNullException(nameof(b));
}
if (c == null)
{
throw new ArgumentNullException(nameof(c));
}
if (transposeA != Transpose.DontTranspose)
{
var swap = rowsA;
rowsA = columnsA;
columnsA = swap;
}
if (transposeB != Transpose.DontTranspose)
{
var swap = rowsB;
rowsB = columnsB;
columnsB = swap;
}
if (columnsA != rowsB)
{
throw new ArgumentOutOfRangeException(Invariant($"columnsA ({columnsA}) != rowsB ({rowsB})"));
}
if (rowsA * columnsA != a.Length)
{
throw new ArgumentOutOfRangeException(Invariant($"rowsA ({rowsA}) * columnsA ({columnsA}) != a.Length ({a.Length})"));
}
if (rowsB * columnsB != b.Length)
{
throw new ArgumentOutOfRangeException(Invariant($"rowsB ({rowsB}) * columnsB ({columnsB}) != b.Length ({b.Length})"));
}
if (rowsA * columnsB != c.Length)
{
throw new ArgumentOutOfRangeException(Invariant($"rowsA ({rowsA}) * columnsB ({columnsB}) != c.Length ({c.Length})"));
}
// handle degenerate cases
if (beta == 0.0)
{
Array.Clear(c, 0, c.Length);
}
else if (beta != 1.0)
{
ScaleArray(beta, c, c);
}
if (alpha == 0.0)
{
return;
}
// Extract column arrays
var columnDataB = new float[columnsB][];
for (int i = 0; i < columnDataB.Length; i++)
{
var column = new float[rowsB];
GetColumn(transposeB, i, rowsB, columnsB, b, column);
columnDataB[i] = column;
}
var shouldNotParallelize = rowsA + columnsB + columnsA < Control.ParallelizeOrder || Control.MaxDegreeOfParallelism < 2;
if (shouldNotParallelize)
{
var row = new float[columnsA];
for (int i = 0; i < rowsA; i++)
{
GetRow(transposeA, i, rowsA, columnsA, a, row);
for (int j = 0; j < columnsB; j++)
{
var col = columnDataB[j];
float sum = 0;
for (int ii = 0; ii < row.Length; ii++)
{
sum += row[ii] * col[ii];
}
c[j * rowsA + i] += alpha * sum;
}
}
}
else
{
CommonParallel.For(0, rowsA, 1, (u, v) =>
{
var row = new float[columnsA];
for (int i = u; i < v; i++)
{
GetRow(transposeA, i, rowsA, columnsA, a, row);
for (int j = 0; j < columnsB; j++)
{
var column = columnDataB[j];
float sum = 0;
for (int ii = 0; ii < row.Length; ii++)
{
sum += row[ii] * column[ii];
}
c[j * rowsA + i] += alpha * sum;
}
}
});
}
}
///
/// Computes the LUP factorization of A. P*A = L*U.
///
/// An by matrix. The matrix is overwritten with the
/// the LU factorization on exit. The lower triangular factor L is stored in under the diagonal of (the diagonal is always 1.0
/// for the L factor). The upper triangular factor U is stored on and above the diagonal of .
/// The order of the square matrix .
/// On exit, it contains the pivot indices. The size of the array must be .
/// This is equivalent to the GETRF LAPACK routine.
public virtual void LUFactor(float[] data, int order, int[] ipiv)
{
if (data == null)
{
throw new ArgumentNullException(nameof(data));
}
if (ipiv == null)
{
throw new ArgumentNullException(nameof(ipiv));
}
if (data.Length != order*order)
{
throw new ArgumentException("The array arguments must have the same length.", nameof(data));
}
if (ipiv.Length != order)
{
throw new ArgumentException("The array arguments must have the same length.", nameof(ipiv));
}
// Initialize the pivot matrix to the identity permutation.
for (var i = 0; i < order; i++)
{
ipiv[i] = i;
}
var vecLUcolj = new float[order];
// Outer loop.
for (var j = 0; j < order; j++)
{
var indexj = j*order;
var indexjj = indexj + j;
// Make a copy of the j-th column to localize references.
for (var i = 0; i < order; i++)
{
vecLUcolj[i] = data[indexj + i];
}
// Apply previous transformations.
for (var i = 0; i < order; i++)
{
// Most of the time is spent in the following dot product.
var kmax = Math.Min(i, j);
var s = 0.0f;
for (var k = 0; k < kmax; k++)
{
s += data[(k*order) + i]*vecLUcolj[k];
}
data[indexj + i] = vecLUcolj[i] -= s;
}
// Find pivot and exchange if necessary.
var p = j;
for (var i = j + 1; i < order; i++)
{
if (Math.Abs(vecLUcolj[i]) > Math.Abs(vecLUcolj[p]))
{
p = i;
}
}
if (p != j)
{
for (var k = 0; k < order; k++)
{
var indexk = k*order;
var indexkp = indexk + p;
var indexkj = indexk + j;
var temp = data[indexkp];
data[indexkp] = data[indexkj];
data[indexkj] = temp;
}
ipiv[j] = p;
}
// Compute multipliers.
if (j < order & data[indexjj] != 0.0)
{
for (var i = j + 1; i < order; i++)
{
data[indexj + i] /= data[indexjj];
}
}
}
}
///
/// Computes the inverse of matrix using LU factorization.
///
/// The N by N matrix to invert. Contains the inverse On exit.
/// The order of the square matrix .
/// This is equivalent to the GETRF and GETRI LAPACK routines.
public virtual void LUInverse(float[] a, int order)
{
if (a == null)
{
throw new ArgumentNullException(nameof(a));
}
if (a.Length != order*order)
{
throw new ArgumentException("The array arguments must have the same length.", nameof(a));
}
var ipiv = new int[order];
LUFactor(a, order, ipiv);
LUInverseFactored(a, order, ipiv);
}
///
/// Computes the inverse of a previously factored matrix.
///
/// The LU factored N by N matrix. Contains the inverse On exit.
/// The order of the square matrix .
/// The pivot indices of .
/// This is equivalent to the GETRI LAPACK routine.
public virtual void LUInverseFactored(float[] a, int order, int[] ipiv)
{
if (a == null)
{
throw new ArgumentNullException(nameof(a));
}
if (ipiv == null)
{
throw new ArgumentNullException(nameof(ipiv));
}
if (a.Length != order*order)
{
throw new ArgumentException("The array arguments must have the same length.", nameof(a));
}
if (ipiv.Length != order)
{
throw new ArgumentException("The array arguments must have the same length.", nameof(ipiv));
}
var inverse = new float[a.Length];
for (var i = 0; i < order; i++)
{
inverse[i + (order*i)] = 1.0f;
}
LUSolveFactored(order, a, order, ipiv, inverse);
inverse.Copy(a);
}
///
/// Solves A*X=B for X using LU factorization.
///
/// The number of columns of B.
/// The square matrix A.
/// The order of the square matrix .
/// On entry the B matrix; on exit the X matrix.
/// This is equivalent to the GETRF and GETRS LAPACK routines.
public virtual void LUSolve(int columnsOfB, float[] a, int order, float[] b)
{
if (a == null)
{
throw new ArgumentNullException(nameof(a));
}
if (b == null)
{
throw new ArgumentNullException(nameof(b));
}
if (a.Length != order*order)
{
throw new ArgumentException("The array arguments must have the same length.", nameof(a));
}
if (b.Length != order*columnsOfB)
{
throw new ArgumentException("The array arguments must have the same length.", nameof(b));
}
if (ReferenceEquals(a, b))
{
throw new ArgumentException("Arguments must be different objects.");
}
var ipiv = new int[order];
var clone = new float[a.Length];
a.Copy(clone);
LUFactor(clone, order, ipiv);
LUSolveFactored(columnsOfB, clone, order, ipiv, b);
}
///
/// Solves A*X=B for X using a previously factored A matrix.
///
/// The number of columns of B.
/// The factored A matrix.
/// The order of the square matrix .
/// The pivot indices of .
/// On entry the B matrix; on exit the X matrix.
/// This is equivalent to the GETRS LAPACK routine.
public virtual void LUSolveFactored(int columnsOfB, float[] a, int order, int[] ipiv, float[] b)
{
if (a == null)
{
throw new ArgumentNullException(nameof(a));
}
if (ipiv == null)
{
throw new ArgumentNullException(nameof(ipiv));
}
if (b == null)
{
throw new ArgumentNullException(nameof(b));
}
if (a.Length != order*order)
{
throw new ArgumentException("The array arguments must have the same length.", nameof(a));
}
if (ipiv.Length != order)
{
throw new ArgumentException("The array arguments must have the same length.", nameof(ipiv));
}
if (b.Length != order*columnsOfB)
{
throw new ArgumentException("The array arguments must have the same length.", nameof(b));
}
if (ReferenceEquals(a, b))
{
throw new ArgumentException("Arguments must be different objects.");
}
// Compute the column vector P*B
for (var i = 0; i < ipiv.Length; i++)
{
if (ipiv[i] == i)
{
continue;
}
var p = ipiv[i];
for (var j = 0; j < columnsOfB; j++)
{
var indexk = j*order;
var indexkp = indexk + p;
var indexkj = indexk + i;
var temp = b[indexkp];
b[indexkp] = b[indexkj];
b[indexkj] = temp;
}
}
// Solve L*Y = P*B
for (var k = 0; k < order; k++)
{
var korder = k*order;
for (var i = k + 1; i < order; i++)
{
for (var j = 0; j < columnsOfB; j++)
{
var index = j*order;
b[i + index] -= b[k + index]*a[i + korder];
}
}
}
// Solve U*X = Y;
for (var k = order - 1; k >= 0; k--)
{
var korder = k + (k*order);
for (var j = 0; j < columnsOfB; j++)
{
b[k + (j*order)] /= a[korder];
}
korder = k*order;
for (var i = 0; i < k; i++)
{
for (var j = 0; j < columnsOfB; j++)
{
var index = j*order;
b[i + index] -= b[k + index]*a[i + korder];
}
}
}
}
///
/// Computes the Cholesky factorization of A.
///
/// On entry, a square, positive definite matrix. On exit, the matrix is overwritten with the
/// the Cholesky factorization.
/// The number of rows or columns in the matrix.
/// This is equivalent to the POTRF LAPACK routine.
public virtual void CholeskyFactor(float[] a, int order)
{
if (a == null)
{
throw new ArgumentNullException(nameof(a));
}
var tmpColumn = new float[order];
// Main loop - along the diagonal
for (var ij = 0; ij < order; ij++)
{
// "Pivot" element
var tmpVal = a[(ij*order) + ij];
if (tmpVal > 0.0)
{
tmpVal = (float) Math.Sqrt(tmpVal);
a[(ij*order) + ij] = tmpVal;
tmpColumn[ij] = tmpVal;
// Calculate multipliers and copy to local column
// Current column, below the diagonal
for (var i = ij + 1; i < order; i++)
{
a[(ij*order) + i] /= tmpVal;
tmpColumn[i] = a[(ij*order) + i];
}
// Remaining columns, below the diagonal
DoCholeskyStep(a, order, ij + 1, order, tmpColumn, Control.MaxDegreeOfParallelism);
}
else
{
throw new ArgumentException("Matrix must be positive definite.");
}
for (int i = ij + 1; i < order; i++)
{
a[(i*order) + ij] = 0.0f;
}
}
}
///
/// Calculate Cholesky step
///
/// Factor matrix
/// Number of rows
/// Column start
/// Total columns
/// Multipliers calculated previously
/// Number of available processors
static void DoCholeskyStep(float[] data, int rowDim, int firstCol, int colLimit, float[] multipliers, int availableCores)
{
var tmpColCount = colLimit - firstCol;
if ((availableCores > 1) && (tmpColCount > Control.ParallelizeElements))
{
var tmpSplit = firstCol + (tmpColCount/3);
var tmpCores = availableCores/2;
CommonParallel.Invoke(
() => DoCholeskyStep(data, rowDim, firstCol, tmpSplit, multipliers, tmpCores),
() => DoCholeskyStep(data, rowDim, tmpSplit, colLimit, multipliers, tmpCores));
}
else
{
for (var j = firstCol; j < colLimit; j++)
{
var tmpVal = multipliers[j];
for (var i = j; i < rowDim; i++)
{
data[(j*rowDim) + i] -= multipliers[i]*tmpVal;
}
}
}
}
///
/// Solves A*X=B for X using Cholesky factorization.
///
/// The square, positive definite matrix A.
/// The number of rows and columns in A.
/// On entry the B matrix; on exit the X matrix.
/// The number of columns in the B matrix.
/// This is equivalent to the POTRF add POTRS LAPACK routines.
public virtual void CholeskySolve(float[] a, int orderA, float[] b, int columnsB)
{
if (a == null)
{
throw new ArgumentNullException(nameof(a));
}
if (b == null)
{
throw new ArgumentNullException(nameof(b));
}
if (b.Length != orderA*columnsB)
{
throw new ArgumentException("The array arguments must have the same length.", nameof(b));
}
if (ReferenceEquals(a, b))
{
throw new ArgumentException("Arguments must be different objects.");
}
var clone = new float[a.Length];
a.Copy(clone);
CholeskyFactor(clone, orderA);
CholeskySolveFactored(clone, orderA, b, columnsB);
}
///
/// Solves A*X=B for X using a previously factored A matrix.
///
/// The square, positive definite matrix A.
/// The number of rows and columns in A.
/// On entry the B matrix; on exit the X matrix.
/// The number of columns in the B matrix.
/// This is equivalent to the POTRS LAPACK routine.
public virtual void CholeskySolveFactored(float[] a, int orderA, float[] b, int columnsB)
{
if (a == null)
{
throw new ArgumentNullException(nameof(a));
}
if (b == null)
{
throw new ArgumentNullException(nameof(b));
}
if (b.Length != orderA*columnsB)
{
throw new ArgumentException("The array arguments must have the same length.", nameof(b));
}
if (ReferenceEquals(a, b))
{
throw new ArgumentException("Arguments must be different objects.");
}
CommonParallel.For(0, columnsB, (u, v) =>
{
for (int i = u; i < v; i++)
{
DoCholeskySolve(a, orderA, b, i);
}
});
}
///
/// Solves A*X=B for X using a previously factored A matrix.
///
/// The square, positive definite matrix A. Has to be different than .
/// The number of rows and columns in A.
/// On entry the B matrix; on exit the X matrix.
/// The column to solve for.
static void DoCholeskySolve(float[] a, int orderA, float[] b, int index)
{
var cindex = index*orderA;
// Solve L*Y = B;
float sum;
for (var i = 0; i < orderA; i++)
{
sum = b[cindex + i];
for (var k = i - 1; k >= 0; k--)
{
sum -= a[(k*orderA) + i]*b[cindex + k];
}
b[cindex + i] = sum/a[(i*orderA) + i];
}
// Solve L'*X = Y;
for (var i = orderA - 1; i >= 0; i--)
{
sum = b[cindex + i];
var iindex = i*orderA;
for (var k = i + 1; k < orderA; k++)
{
sum -= a[iindex + k]*b[cindex + k];
}
b[cindex + i] = sum/a[iindex + i];
}
}
///
/// Computes the QR factorization of A.
///
/// On entry, it is the M by N A matrix to factor. On exit,
/// it is overwritten with the R matrix of the QR factorization.
/// The number of rows in the A matrix.
/// The number of columns in the A matrix.
/// On exit, A M by M matrix that holds the Q matrix of the
/// QR factorization.
/// A min(m,n) vector. On exit, contains additional information
/// to be used by the QR solve routine.
/// This is similar to the GEQRF and ORGQR LAPACK routines.
public virtual void QRFactor(float[] r, int rowsR, int columnsR, float[] q, float[] tau)
{
if (r == null)
{
throw new ArgumentNullException(nameof(r));
}
if (q == null)
{
throw new ArgumentNullException(nameof(q));
}
if (r.Length != rowsR*columnsR)
{
throw new ArgumentException("The given array has the wrong length. Should be rowsR * columnsR.", nameof(r));
}
if (tau.Length < Math.Min(rowsR, columnsR))
{
throw new ArgumentException("The given array is too small. It must be at least min(m,n) long.", nameof(tau));
}
if (q.Length != rowsR*rowsR)
{
throw new ArgumentException("The given array has the wrong length. Should be rowsR * rowsR.", nameof(q));
}
var work = columnsR > rowsR ? new float[rowsR*rowsR] : new float[rowsR*columnsR];
CommonParallel.For(0, rowsR, (a, b) =>
{
for (int i = a; i < b; i++)
{
q[(i*rowsR) + i] = 1.0f;
}
});
var minmn = Math.Min(rowsR, columnsR);
for (var i = 0; i < minmn; i++)
{
GenerateColumn(work, r, rowsR, i, i);
ComputeQR(work, i, r, i, rowsR, i + 1, columnsR, Control.MaxDegreeOfParallelism);
}
for (var i = minmn - 1; i >= 0; i--)
{
ComputeQR(work, i, q, i, rowsR, i, rowsR, Control.MaxDegreeOfParallelism);
}
}
///
/// Computes the QR factorization of A.
///
/// On entry, it is the M by N A matrix to factor. On exit,
/// it is overwritten with the Q matrix of the QR factorization.
/// The number of rows in the A matrix.
/// The number of columns in the A matrix.
/// On exit, A N by N matrix that holds the R matrix of the
/// QR factorization.
/// A min(m,n) vector. On exit, contains additional information
/// to be used by the QR solve routine.
/// This is similar to the GEQRF and ORGQR LAPACK routines.
public virtual void ThinQRFactor(float[] a, int rowsA, int columnsA, float[] r, float[] tau)
{
if (r == null)
{
throw new ArgumentNullException(nameof(r));
}
if (a == null)
{
throw new ArgumentNullException(nameof(a));
}
if (a.Length != rowsA*columnsA)
{
throw new ArgumentException("The given array has the wrong length. Should be rowsR * columnsR.", nameof(a));
}
if (tau.Length < Math.Min(rowsA, columnsA))
{
throw new ArgumentException("The given array is too small. It must be at least min(m,n) long.", nameof(tau));
}
if (r.Length != columnsA*columnsA)
{
throw new ArgumentException("The given array has the wrong length. Should be columnsA * columnsA.", nameof(r));
}
var work = new float[rowsA*columnsA];
var minmn = Math.Min(rowsA, columnsA);
for (var i = 0; i < minmn; i++)
{
GenerateColumn(work, a, rowsA, i, i);
ComputeQR(work, i, a, i, rowsA, i + 1, columnsA, Control.MaxDegreeOfParallelism);
}
//copy R
for (var j = 0; j < columnsA; j++)
{
var rIndex = j*columnsA;
var aIndex = j*rowsA;
for (var i = 0; i < columnsA; i++)
{
r[rIndex + i] = a[aIndex + i];
}
}
//clear A and set diagonals to 1
Array.Clear(a, 0, a.Length);
for (var i = 0; i < columnsA; i++)
{
a[i*rowsA + i] = 1.0f;
}
for (var i = minmn - 1; i >= 0; i--)
{
ComputeQR(work, i, a, i, rowsA, i, columnsA, Control.MaxDegreeOfParallelism);
}
}
#region QR Factor Helper functions
///
/// Perform calculation of Q or R
///
/// Work array
/// Index of column in work array
/// Q or R matrices
/// The first row in
/// The last row
/// The first column
/// The last column
/// Number of available CPUs
static void ComputeQR(float[] work, int workIndex, float[] a, int rowStart, int rowCount, int columnStart, int columnCount, int availableCores)
{
if (rowStart > rowCount || columnStart > columnCount)
{
return;
}
var tmpColCount = columnCount - columnStart;
if ((availableCores > 1) && (tmpColCount > 200))
{
var tmpSplit = columnStart + (tmpColCount/2);
var tmpCores = availableCores/2;
CommonParallel.Invoke(
() => ComputeQR(work, workIndex, a, rowStart, rowCount, columnStart, tmpSplit, tmpCores),
() => ComputeQR(work, workIndex, a, rowStart, rowCount, tmpSplit, columnCount, tmpCores));
}
else
{
for (var j = columnStart; j < columnCount; j++)
{
var scale = 0.0f;
for (var i = rowStart; i < rowCount; i++)
{
scale += work[(workIndex*rowCount) + i - rowStart]*a[(j*rowCount) + i];
}
for (var i = rowStart; i < rowCount; i++)
{
a[(j*rowCount) + i] -= work[(workIndex*rowCount) + i - rowStart]*scale;
}
}
}
}
///
/// Generate column from initial matrix to work array
///
/// Work array
/// Initial matrix
/// The number of rows in matrix
/// The first row
/// Column index
static void GenerateColumn(float[] work, float[] a, int rowCount, int row, int column)
{
var tmp = column*rowCount;
var index = tmp + row;
CommonParallel.For(row, rowCount, (u, v) =>
{
for (int i = u; i < v; i++)
{
var iIndex = tmp + i;
work[iIndex - row] = a[iIndex];
a[iIndex] = 0.0f;
}
});
var norm = 0.0;
for (var i = 0; i < rowCount - row; ++i)
{
var iindex = tmp + i;
norm += work[iindex]*work[iindex];
}
norm = Math.Sqrt(norm);
if (row == rowCount - 1 || norm == 0)
{
a[index] = -work[tmp];
work[tmp] = (float) Constants.Sqrt2;
return;
}
var scale = 1.0f/(float) norm;
if (work[tmp] < 0.0)
{
scale *= -1.0f;
}
a[index] = -1.0f/scale;
CommonParallel.For(0, rowCount - row, 4096, (u, v) =>
{
for (int i = u; i < v; i++)
{
work[tmp + i] *= scale;
}
});
work[tmp] += 1.0f;
var s = (float) Math.Sqrt(1.0/work[tmp]);
CommonParallel.For(0, rowCount - row, 4096, (u, v) =>
{
for (int i = u; i < v; i++)
{
work[tmp + i] *= s;
}
});
}
#endregion
///
/// Solves A*X=B for X using QR factorization of A.
///
/// The A matrix.
/// The number of rows in the A matrix.
/// The number of columns in the A matrix.
/// The B matrix.
/// The number of columns of B.
/// On exit, the solution matrix.
/// The type of QR factorization to perform.
/// Rows must be greater or equal to columns.
public virtual void QRSolve(float[] a, int rows, int columns, float[] b, int columnsB, float[] x, QRMethod method = QRMethod.Full)
{
if (a == null)
{
throw new ArgumentNullException(nameof(a));
}
if (b == null)
{
throw new ArgumentNullException(nameof(b));
}
if (x == null)
{
throw new ArgumentNullException(nameof(x));
}
if (a.Length != rows*columns)
{
throw new ArgumentException("The array arguments must have the same length.", nameof(a));
}
if (b.Length != rows*columnsB)
{
throw new ArgumentException("The array arguments must have the same length.", nameof(b));
}
if (x.Length != columns*columnsB)
{
throw new ArgumentException("The array arguments must have the same length.", nameof(x));
}
if (rows < columns)
{
throw new ArgumentException("The number of rows must greater than or equal to the number of columns.");
}
var work = new float[rows * columns];
var clone = new float[a.Length];
a.Copy(clone);
if (method == QRMethod.Full)
{
var q = new float[rows*rows];
QRFactor(clone, rows, columns, q, work);
QRSolveFactored(q, clone, rows, columns, null, b, columnsB, x, method);
}
else
{
var r = new float[columns*columns];
ThinQRFactor(clone, rows, columns, r, work);
QRSolveFactored(clone, r, rows, columns, null, b, columnsB, x, method);
}
}
///
/// Solves A*X=B for X using a previously QR factored matrix.
///
/// The Q matrix obtained by calling .
/// The R matrix obtained by calling .
/// The number of rows in the A matrix.
/// The number of columns in the A matrix.
/// Contains additional information on Q. Only used for the native solver
/// and can be null for the managed provider.
/// The B matrix.
/// The number of columns of B.
/// On exit, the solution matrix.
/// The type of QR factorization to perform.
/// Rows must be greater or equal to columns.
public virtual void QRSolveFactored(float[] q, float[] r, int rowsA, int columnsA, float[] tau, float[] b, int columnsB, float[] x, QRMethod method = QRMethod.Full)
{
if (r == null)
{
throw new ArgumentNullException(nameof(r));
}
if (q == null)
{
throw new ArgumentNullException(nameof(q));
}
if (b == null)
{
throw new ArgumentNullException(nameof(q));
}
if (x == null)
{
throw new ArgumentNullException(nameof(q));
}
if (rowsA < columnsA)
{
throw new ArgumentException("The number of rows must greater than or equal to the number of columns.");
}
int rowsQ, columnsQ, rowsR, columnsR;
if (method == QRMethod.Full)
{
rowsQ = columnsQ = rowsR = rowsA;
columnsR = columnsA;
}
else
{
rowsQ = rowsA;
columnsQ = rowsR = columnsR = columnsA;
}
if (r.Length != rowsR*columnsR)
{
throw new ArgumentException($"The given array has the wrong length. Should be {rowsR * columnsR}.", nameof(r));
}
if (q.Length != rowsQ*columnsQ)
{
throw new ArgumentException($"The given array has the wrong length. Should be {rowsQ * columnsQ}.", nameof(q));
}
if (b.Length != rowsA*columnsB)
{
throw new ArgumentException($"The given array has the wrong length. Should be {rowsA * columnsB}.", nameof(b));
}
if (x.Length != columnsA*columnsB)
{
throw new ArgumentException($"The given array has the wrong length. Should be {columnsA * columnsB}.", nameof(x));
}
var sol = new float[b.Length];
// Copy B matrix to "sol", so B data will not be changed
Buffer.BlockCopy(b, 0, sol, 0, b.Length*Constants.SizeOfFloat);
// Compute Y = transpose(Q)*B
var column = new float[rowsA];
for (var j = 0; j < columnsB; j++)
{
var jm = j*rowsA;
Array.Copy(sol, jm, column, 0, rowsA);
CommonParallel.For(0, columnsA, (u, v) =>
{
for (int i = u; i < v; i++)
{
var im = i*rowsA;
var sum = 0.0f;
for (var k = 0; k < rowsA; k++)
{
sum += q[im + k]*column[k];
}
sol[jm + i] = sum;
}
});
}
// Solve R*X = Y;
for (var k = columnsA - 1; k >= 0; k--)
{
var km = k*rowsR;
for (var j = 0; j < columnsB; j++)
{
sol[(j*rowsA) + k] /= r[km + k];
}
for (var i = 0; i < k; i++)
{
for (var j = 0; j < columnsB; j++)
{
var jm = j*rowsA;
sol[jm + i] -= sol[jm + k]*r[km + i];
}
}
}
// Fill result matrix
for (var col = 0; col < columnsB; col++)
{
Array.Copy(sol, col*rowsA, x, col*columnsA, columnsR);
}
}
///
/// Computes the singular value decomposition of A.
///
/// Compute the singular U and VT vectors or not.
/// On entry, the M by N matrix to decompose. On exit, A may be overwritten.
/// The number of rows in the A matrix.
/// The number of columns in the A matrix.
/// The singular values of A in ascending value.
/// If is true, on exit U contains the left
/// singular vectors.
/// If is true, on exit VT contains the transposed
/// right singular vectors.
/// This is equivalent to the GESVD LAPACK routine.
public virtual void SingularValueDecomposition(bool computeVectors, float[] a, int rowsA, int columnsA, float[] s, float[] u, float[] vt)
{
if (a == null)
{
throw new ArgumentNullException(nameof(a));
}
if (s == null)
{
throw new ArgumentNullException(nameof(s));
}
if (u == null)
{
throw new ArgumentNullException(nameof(u));
}
if (vt == null)
{
throw new ArgumentNullException(nameof(vt));
}
if (u.Length != rowsA*rowsA)
{
throw new ArgumentException("The array arguments must have the same length.", nameof(u));
}
if (vt.Length != columnsA*columnsA)
{
throw new ArgumentException("The array arguments must have the same length.", nameof(vt));
}
if (s.Length != Math.Min(rowsA, columnsA))
{
throw new ArgumentException("The array arguments must have the same length.", nameof(s));
}
var work = new float[rowsA];
const int maxiter = 1000;
var e = new float[columnsA];
var v = new float[vt.Length];
var stemp = new float[Math.Min(rowsA + 1, columnsA)];
int i, j, l, lp1;
float t;
var ncu = rowsA;
// Reduce matrix to bidiagonal form, storing the diagonal elements
// in "s" and the super-diagonal elements in "e".
var nct = Math.Min(rowsA - 1, columnsA);
var nrt = Math.Max(0, Math.Min(columnsA - 2, rowsA));
var lu = Math.Max(nct, nrt);
for (l = 0; l < lu; l++)
{
lp1 = l + 1;
if (l < nct)
{
// Compute the transformation for the l-th column and
// place the l-th diagonal in vector s[l].
var l1 = l;
var sum = 0.0f;
for (var i1 = l; i1 < rowsA; i1++)
{
sum += a[(l1*rowsA) + i1]*a[(l1*rowsA) + i1];
}
stemp[l] = (float) Math.Sqrt(sum);
if (stemp[l] != 0.0)
{
if (a[(l*rowsA) + l] != 0.0)
{
stemp[l] = Math.Abs(stemp[l])*(a[(l*rowsA) + l]/Math.Abs(a[(l*rowsA) + l]));
}
// A part of column "l" of Matrix A from row "l" to end multiply by 1.0 / s[l]
for (i = l; i < rowsA; i++)
{
a[(l*rowsA) + i] = a[(l*rowsA) + i]*(1.0f/stemp[l]);
}
a[(l*rowsA) + l] = 1.0f + a[(l*rowsA) + l];
}
stemp[l] = -stemp[l];
}
for (j = lp1; j < columnsA; j++)
{
if (l < nct)
{
if (stemp[l] != 0.0)
{
// Apply the transformation.
t = 0.0f;
for (i = l; i < rowsA; i++)
{
t += a[(j*rowsA) + i]*a[(l*rowsA) + i];
}
t = -t/a[(l*rowsA) + l];
for (var ii = l; ii < rowsA; ii++)
{
a[(j*rowsA) + ii] += t*a[(l*rowsA) + ii];
}
}
}
// Place the l-th row of matrix into "e" for the
// subsequent calculation of the row transformation.
e[j] = a[(j*rowsA) + l];
}
if (computeVectors && l < nct)
{
// Place the transformation in "u" for subsequent back multiplication.
for (i = l; i < rowsA; i++)
{
u[(l*rowsA) + i] = a[(l*rowsA) + i];
}
}
if (l >= nrt)
{
continue;
}
// Compute the l-th row transformation and place the l-th super-diagonal in e(l).
var enorm = 0.0;
for (i = lp1; i < e.Length; i++)
{
enorm += e[i]*e[i];
}
e[l] = (float) Math.Sqrt(enorm);
if (e[l] != 0.0)
{
if (e[lp1] != 0.0)
{
e[l] = Math.Abs(e[l])*(e[lp1]/Math.Abs(e[lp1]));
}
// Scale vector "e" from "lp1" by 1.0 / e[l]
for (i = lp1; i < e.Length; i++)
{
e[i] = e[i]*(1.0f/e[l]);
}
e[lp1] = 1.0f + e[lp1];
}
e[l] = -e[l];
if (lp1 < rowsA && e[l] != 0.0)
{
// Apply the transformation.
for (i = lp1; i < rowsA; i++)
{
work[i] = 0.0f;
}
for (j = lp1; j < columnsA; j++)
{
for (var ii = lp1; ii < rowsA; ii++)
{
work[ii] += e[j]*a[(j*rowsA) + ii];
}
}
for (j = lp1; j < columnsA; j++)
{
var ww = -e[j]/e[lp1];
for (var ii = lp1; ii < rowsA; ii++)
{
a[(j*rowsA) + ii] += ww*work[ii];
}
}
}
if (!computeVectors)
{
continue;
}
// Place the transformation in v for subsequent back multiplication.
for (i = lp1; i < columnsA; i++)
{
v[(l*columnsA) + i] = e[i];
}
}
// Set up the final bidiagonal matrix or order m.
var m = Math.Min(columnsA, rowsA + 1);
var nctp1 = nct + 1;
var nrtp1 = nrt + 1;
if (nct < columnsA)
{
stemp[nctp1 - 1] = a[((nctp1 - 1)*rowsA) + (nctp1 - 1)];
}
if (rowsA < m)
{
stemp[m - 1] = 0.0f;
}
if (nrtp1 < m)
{
e[nrtp1 - 1] = a[((m - 1)*rowsA) + (nrtp1 - 1)];
}
e[m - 1] = 0.0f;
// If required, generate "u".
if (computeVectors)
{
for (j = nctp1 - 1; j < ncu; j++)
{
for (i = 0; i < rowsA; i++)
{
u[(j*rowsA) + i] = 0.0f;
}
u[(j*rowsA) + j] = 1.0f;
}
for (l = nct - 1; l >= 0; l--)
{
if (stemp[l] != 0.0)
{
for (j = l + 1; j < ncu; j++)
{
t = 0.0f;
for (i = l; i < rowsA; i++)
{
t += u[(j*rowsA) + i]*u[(l*rowsA) + i];
}
t = -t/u[(l*rowsA) + l];
for (var ii = l; ii < rowsA; ii++)
{
u[(j*rowsA) + ii] += t*u[(l*rowsA) + ii];
}
}
// A part of column "l" of matrix A from row "l" to end multiply by -1.0
for (i = l; i < rowsA; i++)
{
u[(l*rowsA) + i] = u[(l*rowsA) + i]*-1.0f;
}
u[(l*rowsA) + l] = 1.0f + u[(l*rowsA) + l];
for (i = 0; i < l; i++)
{
u[(l*rowsA) + i] = 0.0f;
}
}
else
{
for (i = 0; i < rowsA; i++)
{
u[(l*rowsA) + i] = 0.0f;
}
u[(l*rowsA) + l] = 1.0f;
}
}
}
// If it is required, generate v.
if (computeVectors)
{
for (l = columnsA - 1; l >= 0; l--)
{
lp1 = l + 1;
if (l < nrt)
{
if (e[l] != 0.0)
{
for (j = lp1; j < columnsA; j++)
{
t = 0.0f;
for (i = lp1; i < columnsA; i++)
{
t += v[(j*columnsA) + i]*v[(l*columnsA) + i];
}
t = -t/v[(l*columnsA) + lp1];
for (var ii = l; ii < columnsA; ii++)
{
v[(j*columnsA) + ii] += t*v[(l*columnsA) + ii];
}
}
}
}
for (i = 0; i < columnsA; i++)
{
v[(l*columnsA) + i] = 0.0f;
}
v[(l*columnsA) + l] = 1.0f;
}
}
// Transform "s" and "e" so that they are double
for (i = 0; i < m; i++)
{
float r;
if (stemp[i] != 0.0)
{
t = stemp[i];
r = stemp[i]/t;
stemp[i] = t;
if (i < m - 1)
{
e[i] = e[i]/r;
}
if (computeVectors)
{
// A part of column "i" of matrix U from row 0 to end multiply by r
for (j = 0; j < rowsA; j++)
{
u[(i*rowsA) + j] = u[(i*rowsA) + j]*r;
}
}
}
// Exit
if (i == m - 1)
{
break;
}
if (e[i] == 0.0)
{
continue;
}
t = e[i];
r = t/e[i];
e[i] = t;
stemp[i + 1] = stemp[i + 1]*r;
if (!computeVectors)
{
continue;
}
// A part of column "i+1" of matrix VT from row 0 to end multiply by r
for (j = 0; j < columnsA; j++)
{
v[((i + 1)*columnsA) + j] = v[((i + 1)*columnsA) + j]*r;
}
}
// Main iteration loop for the singular values.
var mn = m;
var iter = 0;
while (m > 0)
{
// Quit if all the singular values have been found.
// If too many iterations have been performed throw exception.
if (iter >= maxiter)
{
throw new NonConvergenceException();
}
// This section of the program inspects for negligible elements in the s and e arrays,
// on completion the variables case and l are set as follows:
// case = 1: if mS[m] and e[l-1] are negligible and l < m
// case = 2: if mS[l] is negligible and l < m
// case = 3: if e[l-1] is negligible, l < m, and mS[l, ..., mS[m] are not negligible (qr step).
// case = 4: if e[m-1] is negligible (convergence).
double ztest;
double test;
for (l = m - 2; l >= 0; l--)
{
test = Math.Abs(stemp[l]) + Math.Abs(stemp[l + 1]);
ztest = test + Math.Abs(e[l]);
if (ztest.AlmostEqualRelative(test, 7))
{
e[l] = 0.0f;
break;
}
}
int kase;
if (l == m - 2)
{
kase = 4;
}
else
{
int ls;
for (ls = m - 1; ls > l; ls--)
{
test = 0.0;
if (ls != m - 1)
{
test = test + Math.Abs(e[ls]);
}
if (ls != l + 1)
{
test = test + Math.Abs(e[ls - 1]);
}
ztest = test + Math.Abs(stemp[ls]);
if (ztest.AlmostEqualRelative(test, 7))
{
stemp[ls] = 0.0f;
break;
}
}
if (ls == l)
{
kase = 3;
}
else if (ls == m - 1)
{
kase = 1;
}
else
{
kase = 2;
l = ls;
}
}
l = l + 1;
// Perform the task indicated by case.
int k;
float f;
float cs;
float sn;
switch (kase)
{
// Deflate negligible s[m].
case 1:
f = e[m - 2];
e[m - 2] = 0.0f;
float t1;
for (var kk = l; kk < m - 1; kk++)
{
k = m - 2 - kk + l;
t1 = stemp[k];
Drotg(ref t1, ref f, out cs, out sn);
stemp[k] = t1;
if (k != l)
{
f = -sn*e[k - 1];
e[k - 1] = cs*e[k - 1];
}
if (computeVectors)
{
// Rotate
for (i = 0; i < columnsA; i++)
{
var z = (cs*v[(k*columnsA) + i]) + (sn*v[((m - 1)*columnsA) + i]);
v[((m - 1)*columnsA) + i] = (cs*v[((m - 1)*columnsA) + i]) - (sn*v[(k*columnsA) + i]);
v[(k*columnsA) + i] = z;
}
}
}
break;
// Split at negligible s[l].
case 2:
f = e[l - 1];
e[l - 1] = 0.0f;
for (k = l; k < m; k++)
{
t1 = stemp[k];
Drotg(ref t1, ref f, out cs, out sn);
stemp[k] = t1;
f = -sn*e[k];
e[k] = cs*e[k];
if (computeVectors)
{
// Rotate
for (i = 0; i < rowsA; i++)
{
var z = (cs*u[(k*rowsA) + i]) + (sn*u[((l - 1)*rowsA) + i]);
u[((l - 1)*rowsA) + i] = (cs*u[((l - 1)*rowsA) + i]) - (sn*u[(k*rowsA) + i]);
u[(k*rowsA) + i] = z;
}
}
}
break;
// Perform one qr step.
case 3:
// calculate the shift.
var scale = 0.0f;
scale = Math.Max(scale, Math.Abs(stemp[m - 1]));
scale = Math.Max(scale, Math.Abs(stemp[m - 2]));
scale = Math.Max(scale, Math.Abs(e[m - 2]));
scale = Math.Max(scale, Math.Abs(stemp[l]));
scale = Math.Max(scale, Math.Abs(e[l]));
var sm = stemp[m - 1]/scale;
var smm1 = stemp[m - 2]/scale;
var emm1 = e[m - 2]/scale;
var sl = stemp[l]/scale;
var el = e[l]/scale;
var b = (((smm1 + sm)*(smm1 - sm)) + (emm1*emm1))/2.0f;
var c = (sm*emm1)*(sm*emm1);
var shift = 0.0f;
if (b != 0.0 || c != 0.0)
{
shift = (float) Math.Sqrt((b*b) + c);
if (b < 0.0)
{
shift = -shift;
}
shift = c/(b + shift);
}
f = ((sl + sm)*(sl - sm)) + shift;
var g = sl*el;
// Chase zeros
for (k = l; k < m - 1; k++)
{
Drotg(ref f, ref g, out cs, out sn);
if (k != l)
{
e[k - 1] = f;
}
f = (cs*stemp[k]) + (sn*e[k]);
e[k] = (cs*e[k]) - (sn*stemp[k]);
g = sn*stemp[k + 1];
stemp[k + 1] = cs*stemp[k + 1];
if (computeVectors)
{
for (i = 0; i < columnsA; i++)
{
var z = (cs*v[(k*columnsA) + i]) + (sn*v[((k + 1)*columnsA) + i]);
v[((k + 1)*columnsA) + i] = (cs*v[((k + 1)*columnsA) + i]) - (sn*v[(k*columnsA) + i]);
v[(k*columnsA) + i] = z;
}
}
Drotg(ref f, ref g, out cs, out sn);
stemp[k] = f;
f = (cs*e[k]) + (sn*stemp[k + 1]);
stemp[k + 1] = -(sn*e[k]) + (cs*stemp[k + 1]);
g = sn*e[k + 1];
e[k + 1] = cs*e[k + 1];
if (computeVectors && k < rowsA)
{
for (i = 0; i < rowsA; i++)
{
var z = (cs*u[(k*rowsA) + i]) + (sn*u[((k + 1)*rowsA) + i]);
u[((k + 1)*rowsA) + i] = (cs*u[((k + 1)*rowsA) + i]) - (sn*u[(k*rowsA) + i]);
u[(k*rowsA) + i] = z;
}
}
}
e[m - 2] = f;
iter = iter + 1;
break;
// Convergence
case 4:
// Make the singular value positive
if (stemp[l] < 0.0)
{
stemp[l] = -stemp[l];
if (computeVectors)
{
// A part of column "l" of matrix VT from row 0 to end multiply by -1
for (i = 0; i < columnsA; i++)
{
v[(l*columnsA) + i] = v[(l*columnsA) + i]*-1.0f;
}
}
}
// Order the singular value.
while (l != mn - 1)
{
if (stemp[l] >= stemp[l + 1])
{
break;
}
t = stemp[l];
stemp[l] = stemp[l + 1];
stemp[l + 1] = t;
if (computeVectors && l < columnsA)
{
// Swap columns l, l + 1
for (i = 0; i < columnsA; i++)
{
var z = v[(l*columnsA) + i];
v[(l*columnsA) + i] = v[((l + 1)*columnsA) + i];
v[((l + 1)*columnsA) + i] = z;
}
}
if (computeVectors && l < rowsA)
{
// Swap columns l, l + 1
for (i = 0; i < rowsA; i++)
{
var z = u[(l*rowsA) + i];
u[(l*rowsA) + i] = u[((l + 1)*rowsA) + i];
u[((l + 1)*rowsA) + i] = z;
}
}
l = l + 1;
}
iter = 0;
m = m - 1;
break;
}
}
if (computeVectors)
{
// Finally transpose "v" to get "vt" matrix
for (i = 0; i < columnsA; i++)
{
for (j = 0; j < columnsA; j++)
{
vt[(j*columnsA) + i] = v[(i*columnsA) + j];
}
}
}
// Copy stemp to s with size adjustment. We are using ported copy of linpack's svd code and it uses
// a singular vector of length rows+1 when rows < columns. The last element is not used and needs to be removed.
// We should port lapack's svd routine to remove this problem.
Buffer.BlockCopy(stemp, 0, s, 0, Math.Min(rowsA, columnsA)*Constants.SizeOfFloat);
}
///
/// Given the Cartesian coordinates (da, db) of a point p, these function return the parameters da, db, c, and s
/// associated with the Givens rotation that zeros the y-coordinate of the point.
///
/// Provides the x-coordinate of the point p. On exit contains the parameter r associated with the Givens rotation
/// Provides the y-coordinate of the point p. On exit contains the parameter z associated with the Givens rotation
/// Contains the parameter c associated with the Givens rotation
/// Contains the parameter s associated with the Givens rotation
/// This is equivalent to the DROTG LAPACK routine.
static void Drotg(ref float da, ref float db, out float c, out float s)
{
float r, z;
var roe = db;
var absda = Math.Abs(da);
var absdb = Math.Abs(db);
if (absda > absdb)
{
roe = da;
}
var scale = absda + absdb;
if (scale == 0.0)
{
c = 1.0f;
s = 0.0f;
r = 0.0f;
z = 0.0f;
}
else
{
var sda = da/scale;
var sdb = db/scale;
r = scale*(float) Math.Sqrt((sda*sda) + (sdb*sdb));
if (roe < 0.0)
{
r = -r;
}
c = da/r;
s = db/r;
z = 1.0f;
if (absda > absdb)
{
z = s;
}
if (absdb >= absda && c != 0.0)
{
z = 1.0f/c;
}
}
da = r;
db = z;
}
///
/// Solves A*X=B for X using the singular value decomposition of A.
///
/// On entry, the M by N matrix to decompose.
/// The number of rows in the A matrix.
/// The number of columns in the A matrix.
/// The B matrix.
/// The number of columns of B.
/// On exit, the solution matrix.
public virtual void SvdSolve(float[] a, int rowsA, int columnsA, float[] b, int columnsB, float[] x)
{
if (a == null)
{
throw new ArgumentNullException(nameof(a));
}
if (b == null)
{
throw new ArgumentNullException(nameof(b));
}
if (x == null)
{
throw new ArgumentNullException(nameof(x));
}
if (b.Length != rowsA*columnsB)
{
throw new ArgumentException("The array arguments must have the same length.", nameof(b));
}
if (x.Length != columnsA*columnsB)
{
throw new ArgumentException("The array arguments must have the same length.", nameof(b));
}
var s = new float[Math.Min(rowsA, columnsA)];
var u = new float[rowsA*rowsA];
var vt = new float[columnsA*columnsA];
var clone = new float[a.Length];
Buffer.BlockCopy(a, 0, clone, 0, a.Length*Constants.SizeOfFloat);
SingularValueDecomposition(true, clone, rowsA, columnsA, s, u, vt);
SvdSolveFactored(rowsA, columnsA, s, u, vt, b, columnsB, x);
}
///
/// Solves A*X=B for X using a previously SVD decomposed matrix.
///
/// The number of rows in the A matrix.
/// The number of columns in the A matrix.
/// The s values returned by .
/// The left singular vectors returned by .
/// The right singular vectors returned by .
/// The B matrix.
/// The number of columns of B.
/// On exit, the solution matrix.
public virtual void SvdSolveFactored(int rowsA, int columnsA, float[] s, float[] u, float[] vt, float[] b, int columnsB, float[] x)
{
if (s == null)
{
throw new ArgumentNullException(nameof(s));
}
if (u == null)
{
throw new ArgumentNullException(nameof(u));
}
if (vt == null)
{
throw new ArgumentNullException(nameof(vt));
}
if (b == null)
{
throw new ArgumentNullException(nameof(b));
}
if (x == null)
{
throw new ArgumentNullException(nameof(x));
}
if (u.Length != rowsA*rowsA)
{
throw new ArgumentException("The array arguments must have the same length.", nameof(u));
}
if (vt.Length != columnsA*columnsA)
{
throw new ArgumentException("The array arguments must have the same length.", nameof(vt));
}
if (s.Length != Math.Min(rowsA, columnsA))
{
throw new ArgumentException("The array arguments must have the same length.", nameof(s));
}
if (b.Length != rowsA*columnsB)
{
throw new ArgumentException("The array arguments must have the same length.", nameof(b));
}
if (x.Length != columnsA*columnsB)
{
throw new ArgumentException("The array arguments must have the same length.", nameof(b));
}
var mn = Math.Min(rowsA, columnsA);
var tmp = new float[columnsA];
for (var k = 0; k < columnsB; k++)
{
for (var j = 0; j < columnsA; j++)
{
float value = 0;
if (j < mn)
{
for (var i = 0; i < rowsA; i++)
{
value += u[(j*rowsA) + i]*b[(k*rowsA) + i];
}
value /= s[j];
}
tmp[j] = value;
}
for (var j = 0; j < columnsA; j++)
{
float value = 0;
for (var i = 0; i < columnsA; i++)
{
value += vt[(j*columnsA) + i]*tmp[i];
}
x[(k*columnsA) + j] = value;
}
}
}
///
/// Computes the eigenvalues and eigenvectors of a matrix.
///
/// Whether the matrix is symmetric or not.
/// The order of the matrix.
/// The matrix to decompose. The length of the array must be order * order.
/// On output, the matrix contains the eigen vectors. The length of the array must be order * order.
/// On output, the eigen values (λ) of matrix in ascending value. The length of the array must .
/// On output, the block diagonal eigenvalue matrix. The length of the array must be order * order.
public virtual void EigenDecomp(bool isSymmetric, int order, float[] matrix, float[] matrixEv, Complex[] vectorEv, float[] matrixD)
{
if (matrix == null)
{
throw new ArgumentNullException(nameof(matrix));
}
if (matrix.Length != order*order)
{
throw new ArgumentException($"The given array has the wrong length. Should be {order * order}.", nameof(matrix));
}
if (matrixEv == null)
{
throw new ArgumentNullException(nameof(matrixEv));
}
if (matrixEv.Length != order*order)
{
throw new ArgumentException($"The given array has the wrong length. Should be {order * order}.", nameof(matrixEv));
}
if (vectorEv == null)
{
throw new ArgumentNullException(nameof(vectorEv));
}
if (vectorEv.Length != order)
{
throw new ArgumentException($"The given array has the wrong length. Should be {order}.", nameof(vectorEv));
}
if (matrixD == null)
{
throw new ArgumentNullException(nameof(matrixD));
}
if (matrixD.Length != order*order)
{
throw new ArgumentException($"The given array has the wrong length. Should be {order * order}.", nameof(matrixD));
}
var d = new float[order];
var e = new float[order];
if (isSymmetric)
{
Buffer.BlockCopy(matrix, 0, matrixEv, 0, matrix.Length*Constants.SizeOfFloat);
var om1 = order - 1;
for (var i = 0; i < order; i++)
{
d[i] = matrixEv[i*order + om1];
}
SymmetricTridiagonalize(matrixEv, d, e, order);
SymmetricDiagonalize(matrixEv, d, e, order);
}
else
{
var matrixH = new float[matrix.Length];
Buffer.BlockCopy(matrix, 0, matrixH, 0, matrix.Length*Constants.SizeOfFloat);
NonsymmetricReduceToHessenberg(matrixEv, matrixH, order);
NonsymmetricReduceHessenberToRealSchur(matrixEv, matrixH, d, e, order);
}
for (var i = 0; i < order; i++)
{
vectorEv[i] = new Complex(d[i], e[i]);
var io = i*order;
matrixD[io + i] = d[i];
if (e[i] > 0)
{
matrixD[io + order + i] = e[i];
}
else if (e[i] < 0)
{
matrixD[io - order + i] = e[i];
}
}
}
///
/// Symmetric Householder reduction to tridiagonal form.
///
/// Data array of matrix V (eigenvectors)
/// Arrays for internal storage of real parts of eigenvalues
/// Arrays for internal storage of imaginary parts of eigenvalues
/// Order of initial matrix
/// This is derived from the Algol procedures tred2 by
/// Bowdler, Martin, Reinsch, and Wilkinson, Handbook for
/// Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
/// Fortran subroutine in EISPACK.
internal static void SymmetricTridiagonalize(float[] a, float[] d, float[] e, int order)
{
// Householder reduction to tridiagonal form.
for (var i = order - 1; i > 0; i--)
{
// Scale to avoid under/overflow.
var scale = 0.0f;
var h = 0.0f;
for (var k = 0; k < i; k++)
{
scale = scale + Math.Abs(d[k]);
}
if (scale == 0.0f)
{
e[i] = d[i - 1];
for (var j = 0; j < i; j++)
{
d[j] = a[(j*order) + i - 1];
a[(j*order) + i] = 0.0f;
a[(i*order) + j] = 0.0f;
}
}
else
{
// Generate Householder vector.
for (var k = 0; k < i; k++)
{
d[k] /= scale;
h += d[k]*d[k];
}
var f = d[i - 1];
var g = (float) Math.Sqrt(h);
if (f > 0)
{
g = -g;
}
e[i] = scale*g;
h = h - (f*g);
d[i - 1] = f - g;
for (var j = 0; j < i; j++)
{
e[j] = 0.0f;
}
// Apply similarity transformation to remaining columns.
for (var j = 0; j < i; j++)
{
f = d[j];
a[(i*order) + j] = f;
g = e[j] + (a[(j*order) + j]*f);
for (var k = j + 1; k <= i - 1; k++)
{
g += a[(j*order) + k]*d[k];
e[k] += a[(j*order) + k]*f;
}
e[j] = g;
}
f = 0.0f;
for (var j = 0; j < i; j++)
{
e[j] /= h;
f += e[j]*d[j];
}
var hh = f/(h + h);
for (var j = 0; j < i; j++)
{
e[j] -= hh*d[j];
}
for (var j = 0; j < i; j++)
{
f = d[j];
g = e[j];
for (var k = j; k <= i - 1; k++)
{
a[(j*order) + k] -= (f*e[k]) + (g*d[k]);
}
d[j] = a[(j*order) + i - 1];
a[(j*order) + i] = 0.0f;
}
}
d[i] = h;
}
// Accumulate transformations.
for (var i = 0; i < order - 1; i++)
{
a[(i*order) + order - 1] = a[(i*order) + i];
a[(i*order) + i] = 1.0f;
var h = d[i + 1];
if (h != 0.0f)
{
for (var k = 0; k <= i; k++)
{
d[k] = a[((i + 1)*order) + k]/h;
}
for (var j = 0; j <= i; j++)
{
var g = 0.0f;
for (var k = 0; k <= i; k++)
{
g += a[((i + 1)*order) + k]*a[(j*order) + k];
}
for (var k = 0; k <= i; k++)
{
a[(j*order) + k] -= g*d[k];
}
}
}
for (var k = 0; k <= i; k++)
{
a[((i + 1)*order) + k] = 0.0f;
}
}
for (var j = 0; j < order; j++)
{
d[j] = a[(j*order) + order - 1];
a[(j*order) + order - 1] = 0.0f;
}
a[(order*order) - 1] = 1.0f;
e[0] = 0.0f;
}
///
/// Symmetric tridiagonal QL algorithm.
///
/// Data array of matrix V (eigenvectors)
/// Arrays for internal storage of real parts of eigenvalues
/// Arrays for internal storage of imaginary parts of eigenvalues
/// Order of initial matrix
/// This is derived from the Algol procedures tql2, by
/// Bowdler, Martin, Reinsch, and Wilkinson, Handbook for
/// Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
/// Fortran subroutine in EISPACK.
///
internal static void SymmetricDiagonalize(float[] a, float[] d, float[] e, int order)
{
const int maxiter = 1000;
for (var i = 1; i < order; i++)
{
e[i - 1] = e[i];
}
e[order - 1] = 0.0f;
var f = 0.0f;
var tst1 = 0.0f;
var eps = Precision.SinglePrecision;
for (var l = 0; l < order; l++)
{
// Find small subdiagonal element
tst1 = Math.Max(tst1, Math.Abs(d[l]) + Math.Abs(e[l]));
var m = l;
while (m < order)
{
if (Math.Abs(e[m]) <= eps*tst1)
{
break;
}
m++;
}
// If m == l, d[l] is an eigenvalue,
// otherwise, iterate.
if (m > l)
{
var iter = 0;
do
{
iter = iter + 1; // (Could check iteration count here.)
// Compute implicit shift
var g = d[l];
var p = (d[l + 1] - g)/(2.0f*e[l]);
var r = SpecialFunctions.Hypotenuse(p, 1.0f);
if (p < 0)
{
r = -r;
}
d[l] = e[l]/(p + r);
d[l + 1] = e[l]*(p + r);
var dl1 = d[l + 1];
var h = g - d[l];
for (var i = l + 2; i < order; i++)
{
d[i] -= h;
}
f = f + h;
// Implicit QL transformation.
p = d[m];
var c = 1.0f;
var c2 = c;
var c3 = c;
var el1 = e[l + 1];
var s = 0.0f;
var s2 = 0.0f;
for (var i = m - 1; i >= l; i--)
{
c3 = c2;
c2 = c;
s2 = s;
g = c*e[i];
h = c*p;
r = SpecialFunctions.Hypotenuse(p, e[i]);
e[i + 1] = s*r;
s = e[i]/r;
c = p/r;
p = (c*d[i]) - (s*g);
d[i + 1] = h + (s*((c*g) + (s*d[i])));
// Accumulate transformation.
for (var k = 0; k < order; k++)
{
h = a[((i + 1)*order) + k];
a[((i + 1)*order) + k] = (s*a[(i*order) + k]) + (c*h);
a[(i*order) + k] = (c*a[(i*order) + k]) - (s*h);
}
}
p = (-s)*s2*c3*el1*e[l]/dl1;
e[l] = s*p;
d[l] = c*p;
// Check for convergence. If too many iterations have been performed,
// throw exception that Convergence Failed
if (iter >= maxiter)
{
throw new NonConvergenceException();
}
} while (Math.Abs(e[l]) > eps*tst1);
}
d[l] = d[l] + f;
e[l] = 0.0f;
}
// Sort eigenvalues and corresponding vectors.
for (var i = 0; i < order - 1; i++)
{
var k = i;
var p = d[i];
for (var j = i + 1; j < order; j++)
{
if (d[j] < p)
{
k = j;
p = d[j];
}
}
if (k != i)
{
d[k] = d[i];
d[i] = p;
for (var j = 0; j < order; j++)
{
p = a[(i*order) + j];
a[(i*order) + j] = a[(k*order) + j];
a[(k*order) + j] = p;
}
}
}
}
///
/// Nonsymmetric reduction to Hessenberg form.
///
/// Data array of matrix V (eigenvectors)
/// Array for internal storage of nonsymmetric Hessenberg form.
/// Order of initial matrix
/// This is derived from the Algol procedures orthes and ortran,
/// by Martin and Wilkinson, Handbook for Auto. Comp.,
/// Vol.ii-Linear Algebra, and the corresponding
/// Fortran subroutines in EISPACK.
internal static void NonsymmetricReduceToHessenberg(float[] a, float[] matrixH, int order)
{
var ort = new float[order];
var high = order - 1;
for (var m = 1; m <= high - 1; m++)
{
var mm1 = m - 1;
var mm1O = mm1*order;
// Scale column.
var scale = 0.0f;
for (var i = m; i <= high; i++)
{
scale += Math.Abs(matrixH[mm1O + i]);
}
if (scale != 0.0f)
{
// Compute Householder transformation.
var h = 0.0f;
for (var i = high; i >= m; i--)
{
ort[i] = matrixH[mm1O + i]/scale;
h += ort[i]*ort[i];
}
var g = (float) Math.Sqrt(h);
if (ort[m] > 0)
{
g = -g;
}
h = h - (ort[m]*g);
ort[m] = ort[m] - g;
// Apply Householder similarity transformation
// H = (I-u*u'/h)*H*(I-u*u')/h)
for (var j = m; j < order; j++)
{
var jO = j*order;
var f = 0.0f;
for (var i = order - 1; i >= m; i--)
{
f += ort[i]*matrixH[jO + i];
}
f = f/h;
for (var i = m; i <= high; i++)
{
matrixH[jO + i] -= f*ort[i];
}
}
for (var i = 0; i <= high; i++)
{
var f = 0.0f;
for (var j = high; j >= m; j--)
{
f += ort[j]*matrixH[j*order + i];
}
f = f/h;
for (var j = m; j <= high; j++)
{
matrixH[j*order + i] -= f*ort[j];
}
}
ort[m] = scale*ort[m];
matrixH[mm1O + m] = scale*g;
}
}
// Accumulate transformations (Algol's ortran).
for (var i = 0; i < order; i++)
{
for (var j = 0; j < order; j++)
{
a[(j*order) + i] = i == j ? 1.0f : 0.0f;
}
}
for (var m = high - 1; m >= 1; m--)
{
var mm1 = m - 1;
var mm1O = mm1*order;
var mm1Om = mm1O + m;
if (matrixH[mm1Om] != 0.0)
{
for (var i = m + 1; i <= high; i++)
{
ort[i] = matrixH[mm1O + i];
}
for (var j = m; j <= high; j++)
{
var g = 0.0f;
var jO = j*order;
for (var i = m; i <= high; i++)
{
g += ort[i]*a[jO + i];
}
// Double division avoids possible underflow
g = (g/ort[m])/matrixH[mm1Om];
for (var i = m; i <= high; i++)
{
a[jO + i] += g*ort[i];
}
}
}
}
}
///
/// Nonsymmetric reduction from Hessenberg to real Schur form.
///
/// Data array of matrix V (eigenvectors)
/// Array for internal storage of nonsymmetric Hessenberg form.
/// Arrays for internal storage of real parts of eigenvalues
/// Arrays for internal storage of imaginary parts of eigenvalues
/// Order of initial matrix
/// This is derived from the Algol procedure hqr2,
/// by Martin and Wilkinson, Handbook for Auto. Comp.,
/// Vol.ii-Linear Algebra, and the corresponding
/// Fortran subroutine in EISPACK.
///
internal static void NonsymmetricReduceHessenberToRealSchur(float[] a, float[] matrixH, float[] d, float[] e, int order)
{
// Initialize
var n = order - 1;
var eps = (float) Precision.SinglePrecision;
var exshift = 0.0f;
float p = 0, q = 0, r = 0, s = 0, z = 0;
float w, x, y;
// Store roots isolated by balanc and compute matrix norm
var norm = 0.0f;
for (var i = 0; i < order; i++)
{
for (var j = Math.Max(i - 1, 0); j < order; j++)
{
norm = norm + Math.Abs(matrixH[j*order + i]);
}
}
// Outer loop over eigenvalue index
var iter = 0;
while (n >= 0)
{
// Look for single small sub-diagonal element
var l = n;
while (l > 0)
{
var lm1 = l - 1;
var lm1O = lm1*order;
s = Math.Abs(matrixH[lm1O + lm1]) + Math.Abs(matrixH[l*order + l]);
if (s == 0.0)
{
s = norm;
}
if (Math.Abs(matrixH[lm1O + l]) < eps*s)
{
break;
}
l--;
}
// Check for convergence
// One root found
if (l == n)
{
var index = n*order + n;
matrixH[index] += exshift;
d[n] = matrixH[index];
e[n] = 0.0f;
n--;
iter = 0;
// Two roots found
}
else if (l == n - 1)
{
var nO = n*order;
var nm1 = n - 1;
var nm1O = nm1*order;
var nOn = nO + n;
w = matrixH[nm1O + n]*matrixH[nO + nm1];
p = (matrixH[nm1O + nm1] - matrixH[nOn])/2.0f;
q = (p*p) + w;
z = (float) Math.Sqrt(Math.Abs(q));
matrixH[nOn] += exshift;
matrixH[nm1O + nm1] += exshift;
x = matrixH[nOn];
// Real pair
if (q >= 0)
{
if (p >= 0)
{
z = p + z;
}
else
{
z = p - z;
}
d[nm1] = x + z;
d[n] = d[nm1];
if (z != 0.0)
{
d[n] = x - (w/z);
}
e[n - 1] = 0.0f;
e[n] = 0.0f;
x = matrixH[nm1O + n];
s = Math.Abs(x) + Math.Abs(z);
p = x/s;
q = z/s;
r = (float) Math.Sqrt((p*p) + (q*q));
p = p/r;
q = q/r;
// Row modification
for (var j = n - 1; j < order; j++)
{
var jO = j*order;
var jOn = jO + n;
z = matrixH[jO + nm1];
matrixH[jO + nm1] = (q*z) + (p*matrixH[jOn]);
matrixH[jOn] = (q*matrixH[jOn]) - (p*z);
}
// Column modification
for (var i = 0; i <= n; i++)
{
var nOi = nO + i;
z = matrixH[nm1O + i];
matrixH[nm1O + i] = (q*z) + (p*matrixH[nOi]);
matrixH[nOi] = (q*matrixH[nOi]) - (p*z);
}
// Accumulate transformations
for (var i = 0; i < order; i++)
{
var nOi = nO + i;
z = a[nm1O + i];
a[nm1O + i] = (q*z) + (p*a[nOi]);
a[nOi] = (q*a[nOi]) - (p*z);
}
// Complex pair
}
else
{
d[n - 1] = x + p;
d[n] = x + p;
e[n - 1] = z;
e[n] = -z;
}
n = n - 2;
iter = 0;
// No convergence yet
}
else
{
var nO = n*order;
var nm1 = n - 1;
var nm1O = nm1*order;
var nOn = nO + n;
// Form shift
x = matrixH[nOn];
y = 0.0f;
w = 0.0f;
if (l < n)
{
y = matrixH[nm1O + nm1];
w = matrixH[nm1O + n]*matrixH[nO + nm1];
}
// Wilkinson's original ad hoc shift
if (iter == 10)
{
exshift += x;
for (var i = 0; i <= n; i++)
{
matrixH[i*order + i] -= x;
}
s = Math.Abs(matrixH[nm1O + n]) + Math.Abs(matrixH[(n - 2)*order + nm1]);
x = y = 0.75f*s;
w = (-0.4375f)*s*s;
}
// MATLAB's new ad hoc shift
if (iter == 30)
{
s = (y - x)/2.0f;
s = (s*s) + w;
if (s > 0)
{
s = (float) Math.Sqrt(s);
if (y < x)
{
s = -s;
}
s = x - (w/(((y - x)/2.0f) + s));
for (var i = 0; i <= n; i++)
{
matrixH[i*order + i] -= s;
}
exshift += s;
x = y = w = 0.964f;
}
}
iter = iter + 1;
if (iter >= 30*order)
{
throw new NonConvergenceException();
}
// Look for two consecutive small sub-diagonal elements
var m = n - 2;
while (m >= l)
{
var mp1 = m + 1;
var mm1 = m - 1;
var mO = m*order;
var mp1O = mp1*order;
var mm1O = mm1*order;
z = matrixH[mO + m];
r = x - z;
s = y - z;
p = (((r*s) - w)/matrixH[mO + mp1]) + matrixH[mp1O + m];
q = matrixH[mp1O + mp1] - z - r - s;
r = matrixH[mp1O + (m + 2)];
s = Math.Abs(p) + Math.Abs(q) + Math.Abs(r);
p = p/s;
q = q/s;
r = r/s;
if (m == l)
{
break;
}
if (Math.Abs(matrixH[mm1O + m])*(Math.Abs(q) + Math.Abs(r)) < eps*(Math.Abs(p)*(Math.Abs(matrixH[mm1O + mm1]) + Math.Abs(z) + Math.Abs(matrixH[mp1O + mp1]))))
{
break;
}
m--;
}
var mp2 = m + 2;
for (var i = mp2; i <= n; i++)
{
matrixH[(i - 2)*order + i] = 0.0f;
if (i > mp2)
{
matrixH[(i - 3)*order + i] = 0.0f;
}
}
// Double QR step involving rows l:n and columns m:n
for (var k = m; k <= n - 1; k++)
{
var notlast = k != n - 1;
var kO = k*order;
var km1 = k - 1;
var kp1 = k + 1;
var kp2 = k + 2;
var kp1O = kp1*order;
var kp2O = kp2*order;
var km1O = km1*order;
if (k != m)
{
p = matrixH[km1O + k];
q = matrixH[km1O + kp1];
r = notlast ? matrixH[km1O + kp2] : 0.0f;
x = Math.Abs(p) + Math.Abs(q) + Math.Abs(r);
if (x == 0.0f)
{
continue;
}
p = p/x;
q = q/x;
r = r/x;
}
s = (float) Math.Sqrt((p*p) + (q*q) + (r*r));
if (p < 0)
{
s = -s;
}
if (s != 0.0f)
{
if (k != m)
{
matrixH[km1O + k] = (-s)*x;
}
else if (l != m)
{
matrixH[km1O + k] = -matrixH[km1O + k];
}
p = p + s;
x = p/s;
y = q/s;
z = r/s;
q = q/p;
r = r/p;
// Row modification
for (var j = k; j < order; j++)
{
var jO = j*order;
var jOk = jO + k;
var jOkp1 = jO + kp1;
var jOkp2 = jO + kp2;
p = matrixH[jOk] + (q*matrixH[jOkp1]);
if (notlast)
{
p = p + (r*matrixH[jOkp2]);
matrixH[jOkp2] -= (p*z);
}
matrixH[jOk] -= (p*x);
matrixH[jOkp1] -= (p*y);
}
// Column modification
for (var i = 0; i <= Math.Min(n, k + 3); i++)
{
p = (x*matrixH[kO + i]) + (y*matrixH[kp1O + i]);
if (notlast)
{
p = p + (z*matrixH[kp2O + i]);
matrixH[kp2O + i] -= (p*r);
}
matrixH[kO + i] -= p;
matrixH[kp1O + i] -= (p*q);
}
// Accumulate transformations
for (var i = 0; i < order; i++)
{
p = (x*a[kO + i]) + (y*a[kp1O + i]);
if (notlast)
{
p = p + (z*a[kp2O + i]);
a[kp2O + i] -= p*r;
}
a[kO + i] -= p;
a[kp1O + i] -= p*q;
}
} // (s != 0)
} // k loop
} // check convergence
} // while (n >= low)
// Backsubstitute to find vectors of upper triangular form
if (norm == 0.0f)
{
return;
}
for (n = order - 1; n >= 0; n--)
{
var nO = n*order;
var nm1 = n - 1;
var nm1O = nm1*order;
p = d[n];
q = e[n];
// Real vector
float t;
if (q == 0.0f)
{
var l = n;
matrixH[nO + n] = 1.0f;
for (var i = n - 1; i >= 0; i--)
{
var ip1 = i + 1;
var iO = i*order;
var ip1O = ip1*order;
w = matrixH[iO + i] - p;
r = 0.0f;
for (var j = l; j <= n; j++)
{
r = r + (matrixH[j*order + i]*matrixH[nO + j]);
}
if (e[i] < 0.0)
{
z = w;
s = r;
}
else
{
l = i;
if (e[i] == 0.0f)
{
if (w != 0.0f)
{
matrixH[nO + i] = (-r)/w;
}
else
{
matrixH[nO + i] = (-r)/(eps*norm);
}
// Solve real equations
}
else
{
x = matrixH[ip1O + i];
y = matrixH[iO + ip1];
q = ((d[i] - p)*(d[i] - p)) + (e[i]*e[i]);
t = ((x*s) - (z*r))/q;
matrixH[nO + i] = t;
if (Math.Abs(x) > Math.Abs(z))
{
matrixH[nO + ip1] = (-r - (w*t))/x;
}
else
{
matrixH[nO + ip1] = (-s - (y*t))/z;
}
}
// Overflow control
t = Math.Abs(matrixH[nO + i]);
if ((eps*t)*t > 1)
{
for (var j = i; j <= n; j++)
{
matrixH[nO + j] /= t;
}
}
}
}
// Complex vector
}
else if (q < 0)
{
var l = n - 1;
// Last vector component imaginary so matrix is triangular
if (Math.Abs(matrixH[nm1O + n]) > Math.Abs(matrixH[nO + nm1]))
{
matrixH[nm1O + nm1] = q/matrixH[nm1O + n];
matrixH[nO + nm1] = (-(matrixH[nO + n] - p))/matrixH[nm1O + n];
}
else
{
var res = Cdiv(0.0f, -matrixH[nO + nm1], matrixH[nm1O + nm1] - p, q);
matrixH[nm1O + nm1] = res.Real;
matrixH[nO + nm1] = res.Imaginary;
}
matrixH[nm1O + n] = 0.0f;
matrixH[nO + n] = 1.0f;
for (var i = n - 2; i >= 0; i--)
{
var ip1 = i + 1;
var iO = i*order;
var ip1O = ip1*order;
var ra = 0.0f;
var sa = 0.0f;
for (var j = l; j <= n; j++)
{
var jO = j*order;
var jOi = jO + i;
ra = ra + (matrixH[jOi]*matrixH[nm1O + j]);
sa = sa + (matrixH[jOi]*matrixH[nO + j]);
}
w = matrixH[iO + i] - p;
if (e[i] < 0.0)
{
z = w;
r = ra;
s = sa;
}
else
{
l = i;
if (e[i] == 0.0)
{
var res = Cdiv(-ra, -sa, w, q);
matrixH[nm1O + i] = res.Real;
matrixH[nO + i] = res.Imaginary;
}
else
{
// Solve complex equations
x = matrixH[ip1O + i];
y = matrixH[iO + ip1];
var vr = ((d[i] - p)*(d[i] - p)) + (e[i]*e[i]) - (q*q);
var vi = (d[i] - p)*2.0f*q;
if ((vr == 0.0f) && (vi == 0.0f))
{
vr = eps*norm*(Math.Abs(w) + Math.Abs(q) + Math.Abs(x) + Math.Abs(y) + Math.Abs(z));
}
var res = Cdiv((x*r) - (z*ra) + (q*sa), (x*s) - (z*sa) - (q*ra), vr, vi);
matrixH[nm1O + i] = res.Real;
matrixH[nO + i] = res.Imaginary;
if (Math.Abs(x) > (Math.Abs(z) + Math.Abs(q)))
{
matrixH[nm1O + ip1] = (-ra - (w*matrixH[nm1O + i]) + (q*matrixH[nO + i]))/x;
matrixH[nO + ip1] = (-sa - (w*matrixH[nO + i]) - (q*matrixH[nm1O + i]))/x;
}
else
{
res = Cdiv(-r - (y*matrixH[nm1O + i]), -s - (y*matrixH[nO + i]), z, q);
matrixH[nm1O + ip1] = res.Real;
matrixH[nO + ip1] = res.Imaginary;
}
}
// Overflow control
t = Math.Max(Math.Abs(matrixH[nm1O + i]), Math.Abs(matrixH[nO + i]));
if ((eps*t)*t > 1)
{
for (var j = i; j <= n; j++)
{
matrixH[nm1O + j] /= t;
matrixH[nO + j] /= t;
}
}
}
}
}
}
// Back transformation to get eigenvectors of original matrix
for (var j = order - 1; j >= 0; j--)
{
var jO = j*order;
for (var i = 0; i < order; i++)
{
z = 0.0f;
for (var k = 0; k <= j; k++)
{
z = z + (a[k*order + i]*matrixH[jO + k]);
}
a[jO + i] = z;
}
}
}
///
/// Complex scalar division X/Y.
///
/// Real part of X
/// Imaginary part of X
/// Real part of Y
/// Imaginary part of Y
/// Division result as a number.
static Complex32 Cdiv(float xreal, float ximag, float yreal, float yimag)
{
if (Math.Abs(yimag) < Math.Abs(yreal))
{
return new Complex32((xreal + (ximag*(yimag/yreal)))/(yreal + (yimag*(yimag/yreal))), (ximag - (xreal*(yimag/yreal)))/(yreal + (yimag*(yimag/yreal))));
}
return new Complex32((ximag + (xreal*(yreal/yimag)))/(yimag + (yreal*(yreal/yimag))), (-xreal + (ximag*(yreal/yimag)))/(yimag + (yreal*(yreal/yimag))));
}
}
}