//
// Math.NET Numerics, part of the Math.NET Project
// http://numerics.mathdotnet.com
// http://github.com/mathnet/mathnet-numerics
//
// Copyright (c) 2009-2017 Math.NET
//
// Permission is hereby granted, free of charge, to any person
// obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without
// restriction, including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following
// conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
//
// Converted from code released with a MIT license available at https://code.google.com/p/nelder-mead-simplex/
using System;
using IStation.Numerics.LinearAlgebra;
namespace IStation.Numerics.Optimization
{
///
/// Class implementing the Nelder-Mead simplex algorithm, used to find a minima when no gradient is available.
/// Called fminsearch() in Matlab. A description of the algorithm can be found at
/// http://se.mathworks.com/help/matlab/math/optimizing-nonlinear-functions.html#bsgpq6p-11
/// or
/// https://en.wikipedia.org/wiki/Nelder%E2%80%93Mead_method
///
public sealed class NelderMeadSimplex : IUnconstrainedMinimizer
{
static readonly double JITTER = 1e-10d; // a small value used to protect against floating point noise
public double ConvergenceTolerance { get; set; }
public int MaximumIterations { get; set; }
public NelderMeadSimplex(double convergenceTolerance, int maximumIterations)
{
ConvergenceTolerance = convergenceTolerance;
MaximumIterations = maximumIterations;
}
///
/// Finds the minimum of the objective function without an initial perturbation, the default values used
/// by fminsearch() in Matlab are used instead
/// http://se.mathworks.com/help/matlab/math/optimizing-nonlinear-functions.html#bsgpq6p-11
///
/// The objective function, no gradient or hessian needed
/// The initial guess
/// The minimum point
public MinimizationResult FindMinimum(IObjectiveFunction objectiveFunction, Vector initialGuess)
{
return Minimum(objectiveFunction, initialGuess, ConvergenceTolerance, MaximumIterations);
}
///
/// Finds the minimum of the objective function with an initial perturbation
///
/// The objective function, no gradient or hessian needed
/// The initial guess
/// The initial perturbation
/// The minimum point
public MinimizationResult FindMinimum(IObjectiveFunction objectiveFunction, Vector initialGuess, Vector initalPertubation)
{
return Minimum(objectiveFunction, initialGuess, initalPertubation, ConvergenceTolerance, MaximumIterations);
}
///
/// Finds the minimum of the objective function without an initial perturbation, the default values used
/// by fminsearch() in Matlab are used instead
/// http://se.mathworks.com/help/matlab/math/optimizing-nonlinear-functions.html#bsgpq6p-11
///
/// The objective function, no gradient or hessian needed
/// The initial guess
/// The minimum point
public static MinimizationResult Minimum(IObjectiveFunction objectiveFunction, Vector initialGuess, double convergenceTolerance=1e-8, int maximumIterations=1000)
{
var initalPertubation = new LinearAlgebra.Double.DenseVector(initialGuess.Count);
for (int i = 0; i < initialGuess.Count; i++)
{
initalPertubation[i] = initialGuess[i] == 0.0 ? 0.00025 : initialGuess[i] * 0.05;
}
return Minimum(objectiveFunction, initialGuess, initalPertubation, convergenceTolerance, maximumIterations);
}
///
/// Finds the minimum of the objective function with an initial perturbation
///
/// The objective function, no gradient or hessian needed
/// The initial guess
/// The initial perturbation
/// The minimum point
public static MinimizationResult Minimum(IObjectiveFunction objectiveFunction, Vector initialGuess, Vector initalPertubation, double convergenceTolerance=1e-8, int maximumIterations=1000)
{
// confirm that we are in a position to commence
if (objectiveFunction == null)
throw new ArgumentNullException(nameof(objectiveFunction),"ObjectiveFunction must be set to a valid ObjectiveFunctionDelegate");
if (initialGuess == null)
throw new ArgumentNullException(nameof(initialGuess), "initialGuess must be initialized");
if (initalPertubation == null)
throw new ArgumentNullException(nameof(initalPertubation), "initalPertubation must be initialized, if unknown use overloaded version of FindMinimum()");
SimplexConstant[] simplexConstants = SimplexConstant.CreateSimplexConstantsFromVectors(initialGuess,initalPertubation);
// create the initial simplex
int numDimensions = simplexConstants.Length;
int numVertices = numDimensions + 1;
Vector[] vertices = InitializeVertices(simplexConstants);
double[] errorValues = new double[numVertices];
int evaluationCount = 0;
ExitCondition exitCondition = ExitCondition.None;
ErrorProfile errorProfile;
errorValues = InitializeErrorValues(vertices, objectiveFunction);
int numTimesHasConverged = 0;
// iterate until we converge, or complete our permitted number of iterations
while (true)
{
errorProfile = EvaluateSimplex(errorValues);
// see if the range in point heights is small enough to exit
// to handle the case when the function is symmetrical and extra iteration is performed
if (HasConverged(convergenceTolerance, errorProfile, errorValues))
{
numTimesHasConverged++;
}
else
{
numTimesHasConverged = 0;
}
if (numTimesHasConverged == 2)
{
exitCondition = ExitCondition.Converged;
break;
}
// attempt a reflection of the simplex
double reflectionPointValue = TryToScaleSimplex(-1.0, ref errorProfile, vertices, errorValues, objectiveFunction);
++evaluationCount;
if (reflectionPointValue <= errorValues[errorProfile.LowestIndex])
{
// it's better than the best point, so attempt an expansion of the simplex
double expansionPointValue = TryToScaleSimplex(2.0, ref errorProfile, vertices, errorValues, objectiveFunction);
++evaluationCount;
}
else if (reflectionPointValue >= errorValues[errorProfile.NextHighestIndex])
{
// it would be worse than the second best point, so attempt a contraction to look
// for an intermediate point
double currentWorst = errorValues[errorProfile.HighestIndex];
double contractionPointValue = TryToScaleSimplex(0.5, ref errorProfile, vertices, errorValues, objectiveFunction);
++evaluationCount;
if (contractionPointValue >= currentWorst)
{
// that would be even worse, so let's try to contract uniformly towards the low point;
// don't bother to update the error profile, we'll do it at the start of the
// next iteration
ShrinkSimplex(errorProfile, vertices, errorValues, objectiveFunction);
evaluationCount += numVertices; // that required one function evaluation for each vertex; keep track
}
}
// check to see if we have exceeded our alloted number of evaluations
if (evaluationCount >= maximumIterations)
{
throw new MaximumIterationsException(FormattableString.Invariant($"Maximum iterations ({maximumIterations}) reached."));
}
}
objectiveFunction.EvaluateAt(vertices[errorProfile.LowestIndex]);
var regressionResult = new MinimizationResult(objectiveFunction, evaluationCount, exitCondition);
return regressionResult;
}
///
/// Evaluate the objective function at each vertex to create a corresponding
/// list of error values for each vertex
///
///
///
///
static double[] InitializeErrorValues(Vector[] vertices, IObjectiveFunction objectiveFunction)
{
double[] errorValues = new double[vertices.Length];
for (int i = 0; i < vertices.Length; i++)
{
objectiveFunction.EvaluateAt(vertices[i]);
errorValues[i] = objectiveFunction.Value;
}
return errorValues;
}
///
/// Check whether the points in the error profile have so little range that we
/// consider ourselves to have converged
///
///
///
///
///
static bool HasConverged(double convergenceTolerance, ErrorProfile errorProfile, double[] errorValues)
{
double range = 2 * Math.Abs(errorValues[errorProfile.HighestIndex] - errorValues[errorProfile.LowestIndex]) /
(Math.Abs(errorValues[errorProfile.HighestIndex]) + Math.Abs(errorValues[errorProfile.LowestIndex]) + JITTER);
if (range < convergenceTolerance)
{
return true;
}
else
{
return false;
}
}
///
/// Examine all error values to determine the ErrorProfile
///
///
///
static ErrorProfile EvaluateSimplex(double[] errorValues)
{
ErrorProfile errorProfile = new ErrorProfile();
if (errorValues[0] > errorValues[1])
{
errorProfile.HighestIndex = 0;
errorProfile.NextHighestIndex = 1;
}
else
{
errorProfile.HighestIndex = 1;
errorProfile.NextHighestIndex = 0;
}
for (int index = 0; index < errorValues.Length; index++)
{
double errorValue = errorValues[index];
if (errorValue <= errorValues[errorProfile.LowestIndex])
{
errorProfile.LowestIndex = index;
}
if (errorValue > errorValues[errorProfile.HighestIndex])
{
errorProfile.NextHighestIndex = errorProfile.HighestIndex; // downgrade the current highest to next highest
errorProfile.HighestIndex = index;
}
else if (errorValue > errorValues[errorProfile.NextHighestIndex] && index != errorProfile.HighestIndex)
{
errorProfile.NextHighestIndex = index;
}
}
return errorProfile;
}
///
/// Construct an initial simplex, given starting guesses for the constants, and
/// initial step sizes for each dimension
///
///
///
static Vector[] InitializeVertices(SimplexConstant[] simplexConstants)
{
int numDimensions = simplexConstants.Length;
Vector[] vertices = new Vector[numDimensions + 1];
// define one point of the simplex as the given initial guesses
var p0 = new LinearAlgebra.Double.DenseVector(numDimensions);
for (int i = 0; i < numDimensions; i++)
{
p0[i] = simplexConstants[i].Value;
}
// now fill in the vertices, creating the additional points as:
// P(i) = P(0) + Scale(i) * UnitVector(i)
vertices[0] = p0;
for (int i = 0; i < numDimensions; i++)
{
double scale = simplexConstants[i].InitialPerturbation;
Vector unitVector = new LinearAlgebra.Double.DenseVector(numDimensions);
unitVector[i] = 1;
vertices[i + 1] = p0.Add(unitVector.Multiply(scale));
}
return vertices;
}
///
/// Test a scaling operation of the high point, and replace it if it is an improvement
///
///
///
///
///
///
///
static double TryToScaleSimplex(double scaleFactor, ref ErrorProfile errorProfile, Vector[] vertices,
double[] errorValues, IObjectiveFunction objectiveFunction)
{
// find the centroid through which we will reflect
Vector centroid = ComputeCentroid(vertices, errorProfile);
// define the vector from the centroid to the high point
Vector centroidToHighPoint = vertices[errorProfile.HighestIndex].Subtract(centroid);
// scale and position the vector to determine the new trial point
Vector newPoint = centroidToHighPoint.Multiply(scaleFactor).Add(centroid);
// evaluate the new point
objectiveFunction.EvaluateAt(newPoint);
double newErrorValue = objectiveFunction.Value;
// if it's better, replace the old high point
if (newErrorValue < errorValues[errorProfile.HighestIndex])
{
vertices[errorProfile.HighestIndex] = newPoint;
errorValues[errorProfile.HighestIndex] = newErrorValue;
}
return newErrorValue;
}
///
/// Contract the simplex uniformly around the lowest point
///
///
///
///
///
static void ShrinkSimplex(ErrorProfile errorProfile, Vector[] vertices, double[] errorValues,
IObjectiveFunction objectiveFunction)
{
Vector lowestVertex = vertices[errorProfile.LowestIndex];
for (int i = 0; i < vertices.Length; i++)
{
if (i != errorProfile.LowestIndex)
{
vertices[i] = (vertices[i].Add(lowestVertex)).Multiply(0.5);
objectiveFunction.EvaluateAt(vertices[i]);
errorValues[i] = objectiveFunction.Value;
}
}
}
///
/// Compute the centroid of all points except the worst
///
///
///
///
static Vector ComputeCentroid(Vector[] vertices, ErrorProfile errorProfile)
{
int numVertices = vertices.Length;
// find the centroid of all points except the worst one
Vector centroid = new LinearAlgebra.Double.DenseVector(numVertices - 1);
for (int i = 0; i < numVertices; i++)
{
if (i != errorProfile.HighestIndex)
{
centroid = centroid.Add(vertices[i]);
}
}
return centroid.Multiply(1.0d / (numVertices - 1));
}
sealed class SimplexConstant
{
public SimplexConstant(double value, double initialPerturbation)
{
Value = value;
InitialPerturbation = initialPerturbation;
}
///
/// The value of the constant
///
public double Value { get; }
// The size of the initial perturbation
public double InitialPerturbation { get; }
public static SimplexConstant[] CreateSimplexConstantsFromVectors(Vector initialGuess, Vector initialPertubation)
{
var constants = new SimplexConstant[initialGuess.Count];
for (int i = 0; i < constants.Length;i++ )
{
constants[i] = new SimplexConstant(initialGuess[i], initialPertubation[i]);
}
return constants;
}
}
sealed class ErrorProfile
{
public int HighestIndex { get; set; }
public int NextHighestIndex { get; set; }
public int LowestIndex { get; set; }
}
}
}