//
// Math.NET Numerics, part of the Math.NET Project
// http://numerics.mathdotnet.com
// http://github.com/mathnet/mathnet-numerics
//
// Copyright (c) 2009-2017 Math.NET
//
// Permission is hereby granted, free of charge, to any person
// obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without
// restriction, including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following
// conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
//
using System;
using IStation.Numerics.LinearAlgebra;
using IStation.Numerics.Optimization.LineSearch;
namespace IStation.Numerics.Optimization
{
public sealed class NewtonMinimizer : IUnconstrainedMinimizer
{
public double GradientTolerance { get; set; }
public int MaximumIterations { get; set; }
public bool UseLineSearch { get; set; }
public NewtonMinimizer(double gradientTolerance, int maximumIterations, bool useLineSearch = false)
{
GradientTolerance = gradientTolerance;
MaximumIterations = maximumIterations;
UseLineSearch = useLineSearch;
}
public MinimizationResult FindMinimum(IObjectiveFunction objective, Vector initialGuess)
{
return Minimum(objective, initialGuess, GradientTolerance, MaximumIterations, UseLineSearch);
}
public static MinimizationResult Minimum(IObjectiveFunction objective, Vector initialGuess, double gradientTolerance=1e-8, int maxIterations=1000, bool useLineSearch=false)
{
if (!objective.IsGradientSupported)
{
throw new IncompatibleObjectiveException("Gradient not supported in objective function, but required for Newton minimization.");
}
if (!objective.IsHessianSupported)
{
throw new IncompatibleObjectiveException("Hessian not supported in objective function, but required for Newton minimization.");
}
// Check that we're not already done
objective.EvaluateAt(initialGuess);
ValidateGradient(objective);
if (objective.Gradient.Norm(2.0) < gradientTolerance)
{
return new MinimizationResult(objective, 0, ExitCondition.AbsoluteGradient);
}
// Set up line search algorithm
var lineSearcher = new WeakWolfeLineSearch(1e-4, 0.9, 1e-4, maxIterations: 1000);
// Subsequent steps
int iterations = 0;
int totalLineSearchSteps = 0;
int iterationsWithNontrivialLineSearch = 0;
bool tmpLineSearch = false;
while (objective.Gradient.Norm(2.0) >= gradientTolerance && iterations < maxIterations)
{
ValidateHessian(objective);
var searchDirection = objective.Hessian.LU().Solve(-objective.Gradient);
if (searchDirection * objective.Gradient >= 0)
{
searchDirection = -objective.Gradient;
tmpLineSearch = true;
}
if (useLineSearch || tmpLineSearch)
{
LineSearchResult result;
try
{
result = lineSearcher.FindConformingStep(objective, searchDirection, 1.0);
}
catch (Exception e)
{
throw new InnerOptimizationException("Line search failed.", e);
}
iterationsWithNontrivialLineSearch += result.Iterations > 0 ? 1 : 0;
totalLineSearchSteps += result.Iterations;
objective = result.FunctionInfoAtMinimum;
}
else
{
objective.EvaluateAt(objective.Point + searchDirection);
}
ValidateGradient(objective);
tmpLineSearch = false;
iterations += 1;
}
if (iterations == maxIterations)
{
throw new MaximumIterationsException(FormattableString.Invariant($"Maximum iterations ({maxIterations}) reached."));
}
return new MinimizationWithLineSearchResult(objective, iterations, ExitCondition.AbsoluteGradient, totalLineSearchSteps, iterationsWithNontrivialLineSearch);
}
static void ValidateGradient(IObjectiveFunctionEvaluation eval)
{
foreach (var x in eval.Gradient)
{
if (Double.IsNaN(x) || Double.IsInfinity(x))
{
throw new EvaluationException("Non-finite gradient returned.", eval);
}
}
}
static void ValidateHessian(IObjectiveFunctionEvaluation eval)
{
for (int ii = 0; ii < eval.Hessian.RowCount; ++ii)
{
for (int jj = 0; jj < eval.Hessian.ColumnCount; ++jj)
{
if (Double.IsNaN(eval.Hessian[ii, jj]) || Double.IsInfinity(eval.Hessian[ii, jj]))
{
throw new EvaluationException("Non-finite Hessian returned.", eval);
}
}
}
}
}
}