//
// Math.NET Numerics, part of the Math.NET Project
// http://numerics.mathdotnet.com
// http://github.com/mathnet/mathnet-numerics
//
// Copyright (c) 2009-2011 Math.NET
//
// Permission is hereby granted, free of charge, to any person
// obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without
// restriction, including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following
// conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
//
//
// Cephes Math Library, Stephen L. Moshier
// ALGLIB 2.0.1, Sergey Bochkanov
//
using System;
// ReSharper disable CheckNamespace
namespace IStation.Numerics
// ReSharper restore CheckNamespace
{
///
/// This partial implementation of the SpecialFunctions class contains all methods related to the harmonic function.
///
public static partial class SpecialFunctions
{
///
/// Computes the 'th Harmonic number.
///
/// The Harmonic number which needs to be computed.
/// The t'th Harmonic number.
public static double Harmonic(int t)
{
return Constants.EulerMascheroni + DiGamma(t + 1.0);
}
///
/// Compute the generalized harmonic number of order n of m. (1 + 1/2^m + 1/3^m + ... + 1/n^m)
///
/// The order parameter.
/// The power parameter.
/// General Harmonic number.
public static double GeneralHarmonic(int n, double m)
{
double sum = 0;
for (int i = 0; i < n; i++)
{
sum += Math.Pow(i + 1, -m);
}
return sum;
}
}
}