// // Math.NET Numerics, part of the Math.NET Project // http://numerics.mathdotnet.com // http://github.com/mathnet/mathnet-numerics // // Copyright (c) 2009-2011 Math.NET // // Permission is hereby granted, free of charge, to any person // obtaining a copy of this software and associated documentation // files (the "Software"), to deal in the Software without // restriction, including without limitation the rights to use, // copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the // Software is furnished to do so, subject to the following // conditions: // // The above copyright notice and this permission notice shall be // included in all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES // OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT // HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, // WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR // OTHER DEALINGS IN THE SOFTWARE. // // // Cephes Math Library, Stephen L. Moshier // ALGLIB 2.0.1, Sergey Bochkanov // using System; // ReSharper disable CheckNamespace namespace IStation.Numerics // ReSharper restore CheckNamespace { /// /// This partial implementation of the SpecialFunctions class contains all methods related to the harmonic function. /// public static partial class SpecialFunctions { /// /// Computes the 'th Harmonic number. /// /// The Harmonic number which needs to be computed. /// The t'th Harmonic number. public static double Harmonic(int t) { return Constants.EulerMascheroni + DiGamma(t + 1.0); } /// /// Compute the generalized harmonic number of order n of m. (1 + 1/2^m + 1/3^m + ... + 1/n^m) /// /// The order parameter. /// The power parameter. /// General Harmonic number. public static double GeneralHarmonic(int n, double m) { double sum = 0; for (int i = 0; i < n; i++) { sum += Math.Pow(i + 1, -m); } return sum; } } }