// // Math.NET Numerics, part of the Math.NET Project // http://numerics.mathdotnet.com // http://github.com/mathnet/mathnet-numerics // // Copyright (c) 2009-2013 Math.NET // // Permission is hereby granted, free of charge, to any person // obtaining a copy of this software and associated documentation // files (the "Software"), to deal in the Software without // restriction, including without limitation the rights to use, // copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the // Software is furnished to do so, subject to the following // conditions: // // The above copyright notice and this permission notice shall be // included in all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES // OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT // HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, // WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR // OTHER DEALINGS IN THE SOFTWARE. // using System; using System.Collections.Generic; using IStation.Numerics.Random; using IStation.Numerics.Threading; namespace IStation.Numerics.Distributions { /// /// Continuous Univariate Cauchy distribution. /// The Cauchy distribution is a symmetric continuous probability distribution. For details about this distribution, see /// Wikipedia - Cauchy distribution. /// public class Cauchy : IContinuousDistribution { System.Random _random; readonly double _location; readonly double _scale; /// /// Initializes a new instance of the class with the location parameter set to 0 and the scale parameter set to 1 /// public Cauchy() : this(0, 1) { } /// /// Initializes a new instance of the class. /// /// The location (x0) of the distribution. /// The scale (γ) of the distribution. Range: γ > 0. public Cauchy(double location, double scale) { if (!IsValidParameterSet(location, scale)) { throw new ArgumentException("Invalid parametrization for the distribution."); } _random = SystemRandomSource.Default; _location = location; _scale = scale; } /// /// Initializes a new instance of the class. /// /// The location (x0) of the distribution. /// The scale (γ) of the distribution. Range: γ > 0. /// The random number generator which is used to draw random samples. public Cauchy(double location, double scale, System.Random randomSource) { if (!IsValidParameterSet(location, scale)) { throw new ArgumentException("Invalid parametrization for the distribution."); } _random = randomSource ?? SystemRandomSource.Default; _location = location; _scale = scale; } /// /// A string representation of the distribution. /// /// a string representation of the distribution. public override string ToString() { return $"Cauchy(x0 = {_location}, γ = {_scale})"; } /// /// Tests whether the provided values are valid parameters for this distribution. /// /// The location (x0) of the distribution. /// The scale (γ) of the distribution. Range: γ > 0. public static bool IsValidParameterSet(double location, double scale) { return scale > 0.0 && !double.IsNaN(location); } /// /// Gets the location (x0) of the distribution. /// public double Location => _location; /// /// Gets the scale (γ) of the distribution. Range: γ > 0. /// public double Scale => _scale; /// /// Gets or sets the random number generator which is used to draw random samples. /// public System.Random RandomSource { get => _random; set => _random = value ?? SystemRandomSource.Default; } /// /// Gets the mean of the distribution. /// public double Mean => throw new NotSupportedException(); /// /// Gets the variance of the distribution. /// public double Variance => throw new NotSupportedException(); /// /// Gets the standard deviation of the distribution. /// public double StdDev => throw new NotSupportedException(); /// /// Gets the entropy of the distribution. /// public double Entropy => Math.Log(4.0*Constants.Pi*_scale); /// /// Gets the skewness of the distribution. /// public double Skewness => throw new NotSupportedException(); /// /// Gets the mode of the distribution. /// public double Mode => _location; /// /// Gets the median of the distribution. /// public double Median => _location; /// /// Gets the minimum of the distribution. /// public double Minimum => double.NegativeInfinity; /// /// Gets the maximum of the distribution. /// public double Maximum => double.PositiveInfinity; /// /// Computes the probability density of the distribution (PDF) at x, i.e. ∂P(X ≤ x)/∂x. /// /// The location at which to compute the density. /// the density at . /// public double Density(double x) { return 1.0/(Constants.Pi*_scale*(1.0 + (((x - _location)/_scale)*((x - _location)/_scale)))); } /// /// Computes the log probability density of the distribution (lnPDF) at x, i.e. ln(∂P(X ≤ x)/∂x). /// /// The location at which to compute the log density. /// the log density at . /// public double DensityLn(double x) { return -Math.Log(Constants.Pi*_scale*(1.0 + (((x - _location)/_scale)*((x - _location)/_scale)))); } /// /// Computes the cumulative distribution (CDF) of the distribution at x, i.e. P(X ≤ x). /// /// The location at which to compute the cumulative distribution function. /// the cumulative distribution at location . /// public double CumulativeDistribution(double x) { return ((1.0/Constants.Pi)*Math.Atan((x - _location)/_scale)) + 0.5; } /// /// Computes the inverse of the cumulative distribution function (InvCDF) for the distribution /// at the given probability. This is also known as the quantile or percent point function. /// /// The location at which to compute the inverse cumulative density. /// the inverse cumulative density at . /// public double InverseCumulativeDistribution(double p) { return p <= 0.0 ? double.NegativeInfinity : p >= 1.0 ? double.PositiveInfinity : _location + _scale*Math.Tan((p - 0.5)*Constants.Pi); } /// /// Draws a random sample from the distribution. /// /// A random number from this distribution. public double Sample() { return SampleUnchecked(_random, _location, _scale); } /// /// Fills an array with samples generated from the distribution. /// public void Samples(double[] values) { SamplesUnchecked(_random, values, _location, _scale); } /// /// Generates a sequence of samples from the Cauchy distribution. /// /// a sequence of samples from the distribution. public IEnumerable Samples() { return SamplesUnchecked(_random, _location, _scale); } static double SampleUnchecked(System.Random rnd, double location, double scale) { return location + scale*Math.Tan(Constants.Pi*(rnd.NextDouble() - 0.5)); } static void SamplesUnchecked(System.Random rnd, double[] values, double location, double scale) { rnd.NextDoubles(values); CommonParallel.For(0, values.Length, 4096, (a, b) => { for (int i = a; i < b; i++) { values[i] = location + scale*Math.Tan(Constants.Pi*(values[i] - 0.5)); } }); } static IEnumerable SamplesUnchecked(System.Random rnd, double location, double scale) { while (true) { yield return location + scale*Math.Tan(Constants.Pi*(rnd.NextDouble() - 0.5)); } } /// /// Computes the probability density of the distribution (PDF) at x, i.e. ∂P(X ≤ x)/∂x. /// /// The location (x0) of the distribution. /// The scale (γ) of the distribution. Range: γ > 0. /// The location at which to compute the density. /// the density at . /// public static double PDF(double location, double scale, double x) { if (scale <= 0.0) { throw new ArgumentException("Invalid parametrization for the distribution."); } return 1.0/(Constants.Pi*scale*(1.0 + (((x - location)/scale)*((x - location)/scale)))); } /// /// Computes the log probability density of the distribution (lnPDF) at x, i.e. ln(∂P(X ≤ x)/∂x). /// /// The location (x0) of the distribution. /// The scale (γ) of the distribution. Range: γ > 0. /// The location at which to compute the density. /// the log density at . /// public static double PDFLn(double location, double scale, double x) { if (scale <= 0.0) { throw new ArgumentException("Invalid parametrization for the distribution."); } return -Math.Log(Constants.Pi*scale*(1.0 + (((x - location)/scale)*((x - location)/scale)))); } /// /// Computes the cumulative distribution (CDF) of the distribution at x, i.e. P(X ≤ x). /// /// The location at which to compute the cumulative distribution function. /// The location (x0) of the distribution. /// The scale (γ) of the distribution. Range: γ > 0. /// the cumulative distribution at location . /// public static double CDF(double location, double scale, double x) { if (scale <= 0.0) { throw new ArgumentException("Invalid parametrization for the distribution."); } return Math.Atan((x - location)/scale)/Constants.Pi + 0.5; } /// /// Computes the inverse of the cumulative distribution function (InvCDF) for the distribution /// at the given probability. This is also known as the quantile or percent point function. /// /// The location at which to compute the inverse cumulative density. /// The location (x0) of the distribution. /// The scale (γ) of the distribution. Range: γ > 0. /// the inverse cumulative density at . /// public static double InvCDF(double location, double scale, double p) { if (scale <= 0.0) { throw new ArgumentException("Invalid parametrization for the distribution."); } return p <= 0.0 ? double.NegativeInfinity : p >= 1.0 ? double.PositiveInfinity : location + scale*Math.Tan((p - 0.5)*Constants.Pi); } /// /// Generates a sample from the distribution. /// /// The random number generator to use. /// The location (x0) of the distribution. /// The scale (γ) of the distribution. Range: γ > 0. /// a sample from the distribution. public static double Sample(System.Random rnd, double location, double scale) { if (scale <= 0.0) { throw new ArgumentException("Invalid parametrization for the distribution."); } return SampleUnchecked(rnd, location, scale); } /// /// Generates a sequence of samples from the distribution. /// /// The random number generator to use. /// The location (x0) of the distribution. /// The scale (γ) of the distribution. Range: γ > 0. /// a sequence of samples from the distribution. public static IEnumerable Samples(System.Random rnd, double location, double scale) { if (scale <= 0.0) { throw new ArgumentException("Invalid parametrization for the distribution."); } return SamplesUnchecked(rnd, location, scale); } /// /// Fills an array with samples generated from the distribution. /// /// The random number generator to use. /// The array to fill with the samples. /// The location (x0) of the distribution. /// The scale (γ) of the distribution. Range: γ > 0. /// a sequence of samples from the distribution. public static void Samples(System.Random rnd, double[] values, double location, double scale) { if (scale <= 0.0) { throw new ArgumentException("Invalid parametrization for the distribution."); } SamplesUnchecked(rnd, values, location, scale); } /// /// Generates a sample from the distribution. /// /// The location (x0) of the distribution. /// The scale (γ) of the distribution. Range: γ > 0. /// a sample from the distribution. public static double Sample(double location, double scale) { if (scale <= 0.0) { throw new ArgumentException("Invalid parametrization for the distribution."); } return SampleUnchecked(SystemRandomSource.Default, location, scale); } /// /// Generates a sequence of samples from the distribution. /// /// The location (x0) of the distribution. /// The scale (γ) of the distribution. Range: γ > 0. /// a sequence of samples from the distribution. public static IEnumerable Samples(double location, double scale) { if (scale <= 0.0) { throw new ArgumentException("Invalid parametrization for the distribution."); } return SamplesUnchecked(SystemRandomSource.Default, location, scale); } /// /// Fills an array with samples generated from the distribution. /// /// The array to fill with the samples. /// The location (x0) of the distribution. /// The scale (γ) of the distribution. Range: γ > 0. /// a sequence of samples from the distribution. public static void Samples(double[] values, double location, double scale) { if (scale <= 0.0) { throw new ArgumentException("Invalid parametrization for the distribution."); } SamplesUnchecked(SystemRandomSource.Default, values, location, scale); } } }